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Abstract

Semilinear maps are a generalization of linear maps between vector spaces where
we allow the scalar action to be twisted by a ring homomorphism such as com-
plex conjugation. In particular, this generalization unifies the concepts of linear
and conjugate-linear maps. We implement this generalization in Lean’s mathlib
library, along with a number of important results in functional analysis which
previously were impossible to formalize properly. Specifically, we prove the Fréchet–
Riesz representation theorem and the spectral theorem for compact self-adjoint
operators generically over real and complex Hilbert spaces. We also show that
semilinear maps have applications beyond functional analysis by formalizing the
one-dimensional case of a theorem of Dieudonné and Manin that classifies the
isocrystals over an algebraically closed field with positive characteristic.
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1 Introduction

Proof assistant users have long recognized the value of abstraction. Working at high
levels of generality and specializing only when needed can save significant effort in both
the long and short term. In program verification, this principle manifests in the use of
stepwise refinement of programs from abstract specifications to executable code [1, 2].
Mathematical generalizations that are rarely used in informal presentations are much
more common in formal libraries, including the use of filters to generalize limits in
topology and analysis [3] and uniform spaces as a generalization of metric spaces [4–6].
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We propose another such mathematical generalization: linear maps, a fundamental
concept in many fields of mathematics, can be seen as a special case of semilinear maps.
A linear algebra library built on top of this more general structure can unify concepts
that would otherwise be defined separately. In particular, linear and conjugate-linear
(or antilinear) maps are both examples of semilinear maps. By relating these, one can
avoid a large amount of code duplication and state many theorems more naturally.
This generalization is rarely seen explicitly in informal mathematics. Texts tend to
focus on the linear case, claiming results about the conjugate-linear or semilinear cases
“by analogy” when needed.

Motivated by the desire to formalize theorems from functional analysis at the proper
level of abstraction, we have implemented this generalization in mathlib [7], a library
of formal mathematics in the Lean proof assistant [8]. When we started this project,
much of mathlib was already built on top of standard linear maps. With care and clever
notation we were able to make the transition largely invisible. With the generalization
complete we were able to state and prove a number of theorems far more elegantly
than could have been done before.

Among the results unlocked by this refactor are the Fréchet–Riesz representation
theorem, which states that a Hilbert space is either isomorphic or conjugate-isomorphic
to its dual space; the generic definition of the adjoint operator on an inner product
space over R or C; and the spectral theorem for compact self-adjoint operators on
Hilbert spaces, which gives a canonical form for an important class of linear maps
by reference to their eigenvectors. This material in turn lays the groundwork for the
formalization of vast areas of mathematics: complex Hilbert spaces are the bread and
butter of quantum mechanics and are therefore a prerequisite for quantum information
theory and a large part of mathematical physics.

Separately from the theory of semilinear maps, one of the key ingredients for the
development of the spectral theorem was a structure theory of Hilbert spaces, notably
including Hilbert bases. As a second application of this material, we also developed a
theory of Fourier series on the circle, culminating in Parseval’s identity.

Finally, as evidence that semilinear maps are useful for more than unifying real and
complex vector spaces, we have also formalized the one-dimensional case of a theorem
of Dieudonné and Manin [9] that classifies the isocrystals over an algebraically closed
field of characteristic p > 0. This is a foundational result in p-adic Hodge theory.

Related literature documents the struggles in other libraries to unify real and
complex linear algebra. For instance, Aransay and Divasón [10], working in Isabelle,
write:

We miss . . . the definition of a “common place” or generic structure representing inner
product spaces over real and complex numbers . . . that could permit a definition and
formalisation of the Gram-Schmidt process for both structures simultaneously.

Their work introduces a “local” solution to the issue, but we argue that basing a library
on semilinear maps is the “global” solution. We discuss related work in more detail in
Section 11.
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We roughly estimate that over the course of this project we have added 17k lines
of code to mathlib, with 1k more lines waiting to be merged. We provide links to our
contributions, indicating where they can be found in the library, on the project website.1

This paper is an expanded version of an earlier conference publication [11].
Section 7.2 contains a development of the theory of Hilbert bases, which we developed
concurrently with the Hilbert sum construction (Section 7.1) described in the original
article which was used for the spectral theorem. Section 2.5 contains an application
of this work on Hilbert bases: an efficient development of the theory of Fourier series,
culminating in Parseval’s identity. A paragraph at the end of Section 10 describes some
additions to the Witt vector development written shortly after the original submission.

2 Mathematical preliminaries

2.1 Semilinear maps

Given modules M1, M2 over semirings R1, R2 and a ring homomorphism σ ∶ R1 → R2,
a σ-semilinear map from M1 to M2 is a function f ∶M1 →M2 satisfying the two axioms

1. for all x, y ∈M1, f(x + y) = f(x) + f(y)
2. for all x ∈M1 and c ∈ R1, f(cx) = σ(c)f(x).

Let us note the two canonical examples:

• For R1 = R2 = R and σ the identity ring homomorphism idR ∶ R → R, the second
condition simplifies to f(cx) = cf(x), and therefore an idR-semilinear map is precisely
an R-linear map in the classic sense.

• For R1 = R2 = C and σ the complex-conjugation operation conj ∶ C → C, the
second condition simplifies to f(cx) = cf(x). Therefore a conj-semilinear map is a
conjugate-linear map between complex vector spaces.

The theory of semilinear maps develops along the same lines as the theory of
linear maps, with minimal adjustment. The composition of a σ-semilinear map and
a τ -semilinear map, for σ ∶ R1 → R2 and τ ∶ R2 → R3, is a (τ ○ σ)-semilinear map.
(For example, the composition of two conjugate-linear maps is a linear map.) If σ is
bijective, the inverse of a bijective σ-semilinear map is a σ−1-semilinear map.

Theorems about special classes of linear maps also admit semilinear analogues.
Consider, for example, the theorem that a K-linear map f ∶ E1 → E2, for K a normed
field and E1, E2 normed spaces over K, is continuous if and only if it is bounded
(∥f(x)∥ ≤M∥x∥ for some fixed M , for all x). This theorem generalizes to σ-semilinear
maps, for σ ∶ K1 → K2, if the ring homomorphism σ is an isometry.

2.2 Conjugate-linear maps in functional analysis

An inner product space is a vector space E over a scalar field K ∈ {R,C} equipped
with an inner product ⟨⋅, ⋅⟩, namely a K-valued function of two arguments which is
conjugate-linear in the first argument and linear in the second argument and which
has symmetry and positivity properties:

1https://robertylewis.com/semilinear-paper
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1. for all u, v,w ∈ E, ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩ and ⟨w,u + v⟩ = ⟨w,u⟩ + ⟨w, v⟩;
2. for all c ∈ K and v,w ∈ E, ⟨cv,w⟩ = c⟨v,w⟩ and ⟨v, cw⟩ = c⟨v,w⟩;
3. for all v,w ∈ E, ⟨v,w⟩ = ⟨w, v⟩;
4. for all v ∈ E, the quantity ⟨v, v⟩ (which by (3) is real) is nonnegative, and strictly

positive unless v = 0.
For the case of real scalars, K = R, we consider the conjugation operation as being the
identity; this allows a development of the complex case to subsume the simpler real case.

An inner product space has an associated norm ∥v∥ =
√
⟨v, v⟩ and hence a metric

structure. A Hilbert space is an inner product space for which this metric is complete.
This condition is automatic in finite dimension.

The dual of an inner product space E is the K-vector space of continuous linear
maps φ ∶ E → K. There is a natural conjugate-linear map from E to its dual E∗: the
vector v ∈ E is mapped to the vector ⟨v, ⋅⟩ in E∗. To see the conjugate-linearity of
this map, observe that ⟨cv, ⋅⟩ = c⟨v, ⋅⟩. It is not difficult to see that, for an appropriate
norm on E∗, this map is an isometry. A more subtle theorem, the Fréchet–Riesz
representation theorem, asserts that for a Hilbert space E this conjugate-linear
map is bijective.

Given Hilbert spaces E, F over K and a continuous linear map T ∶ E → F , it can
be proved that there is a unique continuous linear map T ∗ ∶ F → E, the adjoint of T ,
such that for all v ∈ E and w ∈ F , ⟨Tv,w⟩ = ⟨v, T ∗w⟩. It turns out that the operation
of sending T ∶ E → F to its adjoint T ∗ ∶ F → E is a conjugate-linear map from E → F
to F → E. To see the conjugate-linearity in this case, observe that

⟨v, (cT )∗w⟩ = ⟨(cT )v,w⟩ = c⟨Tv,w⟩ = c⟨v, T ∗w⟩ = ⟨v, (cT ∗)w⟩.

Like the conjugate-linear map appearing in the Fréchet–Riesz representation theorem,
the adjoint map T ↦ T ∗ turns out to be bijective and (for an appropriate norm)
isometric.

Several important classes of continuous linear maps are defined using the adjoint.
A continuous linear map T ∶ E → E is self-adjoint, if T ∗ = T , and it is normal, if
T ∗T = TT ∗. Self-adjoint implies normal.

2.3 Hilbert sums and Hilbert bases

The Hilbert sum ⊕i∈ιEι of a family of inner product spaces (Ei)i∈ι is an inner product
space whose elements are choices (vi)i∈ι of an element from each Ei, such that the
collection of chosen elements is square-summable in the sense that ∑i∈ι∥vi∥2 < ∞.
Elements in the Hilbert sum ⊕i∈ιEi can be added and scalar-multiplied in the obvious
way. The inner product on the Hilbert sum is given by ⟨(vi)i∈ι, (wi)i∈ι⟩ = ∑i∈ι⟨vi,wi⟩.
It can be proved that if each Ei is a Hilbert space (i.e., complete) then so is ⊕i∈ιEi. A
linear map T ∶⊕i∈ιEi →⊕i∈ιEi is diagonal if there exist scalars (µi)i∈ι such that for
all (vi)i∈ι ∈⊕i∈ιEi, T ((vi)i∈ι) = (µivi)i∈ι.

The Hilbert sum ⊕i∈ιK of ι copies of the trivial inner product space K is denoted
ℓ2(ι,K). A Hilbert basis for an inner product space E, with the index set ι, is a bijective
linear isometry r from E to ℓ2(ι,K). This is identified, in informal mathematics, with
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the collection (vi)i∈ι = (r−1(ei))i∈ι of vectors in the Hilbert space E which are the
preimages of the elementary vectors

ei(j) =
⎧⎪⎪⎨⎪⎪⎩

1, j = i
0, j ≠ i

in ℓ2(ι,K): such a collection (vi)i∈ι of vectors in E is a Hilbert basis if its elements
are mutually-orthogonal and their span in E is dense. Thus the notion generalizes
the finite-dimensional notion of an orthonormal basis. An argument via Zorn’s lemma
proves that a Hilbert space admits an orthonormal basis.

The bijective linear isometry r ∶ E → ℓ2(ι,K) can be reconstructed from a Hilbert
basis considered as family of vectors (vi)i∈ι as follows: for w an element of E, the
element r(w) of ℓ2(ι,K) satisfies,

r(w)(j) = ⟨vj ,w⟩. (1)

Since this map is an isometry,

∥w∥2 = ∥r(w)∥2

=∑
i∈ι

∣⟨vm,w⟩∣2 . (2)

2.4 The spectral theorem

A linear map T ∶ E → F between normed spaces is compact if the image under T of
the unit ball in E is precompact (that is, has compact closure) in F . This condition
implies the continuity of T but is more restrictive. The spectral theorem states that
a normal (over C) or self-adjoint (over R or C), compact linear map T ∶ E → E is
equivalent to a diagonal map, in the sense that there exists a bijective linear isometry
Φ from E to a Hilbert sum ⊕i∈ι Fi, such that the linear map Φ ○ T ○Φ−1 is diagonal.
In fact, the Fi may be chosen to be the eigenspaces of T , with the µi chosen to be the
associated eigenvalues.

In finite dimension, every linear map is compact. In this setting the spectral theorem
reduces to the more elementary diagonalization theorem for a normal endomorphism
T of a finite-dimensional inner product space E: there exists a bijective linear isometry
Φ from E to a finite direct sum of finite-dimensional inner product spaces (Fi)i∈ι, such
that the linear map Φ ○ T ○Φ−1 is diagonal.

2.5 Fourier series and Parseval’s identity

A concrete example of a complex Hilbert space is L2(S1,C), the square-integrable
functions on the circle S1 ∶= {z ∈ C ∶ ∣z∣ = 1}, identified up to agreement almost
everywhere. The inner product of elements f, g ∶ S1 → C in this Hilbert space is by
definition

⟨f, g⟩ = ∫
z∈S1

f(z)g(z)dµz,
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for µ the unit-measure Haar measure on the circle.
The “monomial” functions Fn ∶ S1 → C defined by Fn(z) = zn are orthonormal

in L2(S1,C), a straightforward computation, and dense in L2(S1,C), a subtle fact
which can be proved by invoking the Stone-Weierstrass theorem and the denseness of
continuous functions in Lp. Therefore the functions (Fn)n∈Z form a Z-indexed Hilbert
basis for L2(S1,C), and define an isometry from L2(S1,C) to ℓ2(Z,C).

The Fourier coefficients (f̂n)n∈Z of a function f ∈ L2(S1,C) are by definition the

Z-indexed family of complex numbers constituting the element of ℓ2(Z,C) to which f
is mapped under this isometry. Unfolding the definition of the inner product in this
Hilbert space, we have by (1) that

f̂n = ∫
z∈S1

z−nf(z)dµz,

and by (2) that

∫
z∈S1
∣f(z)∣2dµz = ∥f∥2

= ∑
n∈Z
∣f̂n∣2.

This theorem is known as Parseval’s identity.

2.6 Frobenius-semilinear maps

Given a commutative ring R and a prime p, there is a classical construction [12] of
an associated commutative ring W(R), the ring of p-typical Witt vectors of R. The
elements of this ring are sequences of elements of R, but the definitions of addition and
multiplication are rather elaborate. The motivating example is that for R the finite
field Z/pZ, the ring W(Z/pZ) is the ring of p-adic integers.

The ring W(R) admits a canonical ring-endomorphism, the Frobenius endomor-
phism. Concretely, when R has characteristic p, it operates by sending a sequence
(x0, x1, x2, . . .) to (xp

0, x
p
1, x

p
2, . . .). In the example of the p-adic integers W(Z/pZ), this

endomorphism is the identity, so the construction becomes interesting only for more
complicated rings R, such as field extensions of Z/pZ.

For R an integral domain of characteristic p, the ring W(R) is also an integral
domain, and therefore has a well-defined field of fractions. In this case, the Frobenius
endomorphism ofW(R) extends to an endomorphism of its field of fractions. If moreover
the ring R is perfect, then the Frobenius endomorphism is an automorphism (that is,
bijective), as is the induced automorphism of its field of fractions.

Let us fix an algebraically closed field R of characteristic p (which is necessarily
a perfect integral domain), and denote by K the field of fractions of W(R) and by
φ ∶K →K the Frobenius automorphism of K. There is a very well-developed theory of
φ-semilinear maps between vector spaces over K. Notably, an important theorem of
Dieudonné and Manin [9] provides an analogue of the spectral theorem. For a finite-
dimensional vector space V over K, it classifies the isocrystals (bijective φ-semilinear
maps f ∶ V → V ), by constructing for such an f a decomposition of V as a direct sum
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of vector spaces Vi which are preserved by f and on each of which the map f has a
certain canonical form.

In the one-dimensional case this classification can be stated in a fairly elementary
way. Let f ∶K →K be a φ-semilinear automorphism of K, considered as a vector space
over itself. Then there exists an invertible element a of K and an integer m ∈ Z, such
that for all v ∈K, f(v) = pma−1φ(av).

3 Lean preliminaries

The mathlib library builds its algebraic hierarchy using type classes [7, 13]. Baanen [14]
gives an in depth account of mathlib’s use of type classes, which we summarize very
briefly.

Each argument to a Lean declaration is declared as explicit (()), implicit ({}), or
instance-implicit ([]). Explicit arguments must be provided when the declaration is
applied; implicit arguments are inferred by unification; instance-implicit arguments are
inferred by type class instance resolution.

The fundamental type class of mathlib’s linear algebra library is module.

class module (R : Type u) (M : Type v) [semiring R] [add_comm_monoid
M]

extends distrib_mul_action R M :=
(add_smul : ∀ (r s : R) (x : M), (r + s) ⋅ x = r ⋅ x + s ⋅ x)
(zero_smul : ∀ (x : M), (0 : R) ⋅ x = 0)

This type class says that the additive monoid M has an R-module structure: it supports
scalar multiplication by elements of the semiring R, and this scalar multiplication
behaves properly with respect to addition on M. When R is a field instead of a semiring,
an R-module is in fact a vector space. Many definitions and theorems apply in the more
general setting, and when the vector space setting is needed, the transition is invisible.

A type class is a structure (i.e. a record type) that takes zero or more parameters
and has zero or more fields. In the above, the arguments R and M are parameters, as
are the arguments that R is a semiring and M is an additive commutative monoid. In
order to elaborate the type module R M, Lean’s type class inference algorithm must
be able to infer the latter arguments automatically. The fields of module are add_smul
and zero_smul, and a projection to distrib_mul_action R M. To construct a term
of type module R M, the user must provide these values; given a term of type module
R M, the user can access these values. The extends keyword can be read as “inherits
from.” An assumption distrib_mul_action R M is available while defining the fields
add_smul and zero_smul, and indeed, the scalar action used in these fields is derived
from this instance.

By default the parameters to a type class are input parameters. Lean will begin its
instance search when all input parameters are known. By denoting certain parameters
as output parameters, the user can instruct Lean to begin searching for instances of
that class before those parameters are known; they will be determined by the solution
to the search. Baanen [14, Section 5.1] describes output parameters in more detail.

Like mathlib, we freely use classical logic and do not focus on defining things
computably. Within code blocks in this paper, we omit the bodies of definitions and
theorems when only the type is relevant, omit some implicit arguments when the
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types are clear from context, and occasionally rename declarations for the sake of
presentation.

4 Semilinear maps in Lean

Section 2 covered the mathematical motivation for semilinear maps. Here we focus on
our implementation of this generalization in Lean. This work is done in the context
of mathlib [7], a project with over 860k lines of code, 240 contributors, and countless
users. Given the difficulty and importance of maintaining such a large library [15], we
were motivated to make this refactor with as little disruption as possible.

4.1 Defining semilinear maps

Before beginning our refactor to use semilinear maps, mathlib’s linear algebra
development was based on the more familiar concept of linear maps.

structure linear_map (R : Type u) (M1 : Type v) (M2 : Type w)
[semiring R] [add_comm_monoid M1] [add_comm_monoid M2] [module R M1]
[module R M2] extends add_hom M1 M2, mul_action_hom R M1 M2

Given two R-modules M1 and M2, a linear map is an additive homomorphism M1 →
M2 that respects the multiplicative action of R. A mul_action_hom is a homomorphism
between types acted on by the same type of scalars [16].

For readers unfamiliar with Lean syntax, it may be clarifying to see what information
goes in to defining such a linear map. Despite the intimidating syntax, the input
information is exactly as expected: if you have types R, M1, and M2 with the appropriate
operations and structure, you can construct a linear map by providing a function M1
→ M2 and proofs that this function factors through addition and scalar multiplication.

example (R : Type u) (M1 : Type v) (M2 : Type w)
[semiring R] [add_comm_monoid M1] [add_comm_monoid M2] [module R M1]
[module R M2] : linear_map R M1 M2 :=

{ to_fun := _, -- M1 → M2
map_add′ := _, -- ∀ (x y : M1), to_fun (x + y) = to_fun x + to_fun y

map_smul′ := _ } -- ∀ (m : R) (x : M1), to_fun (m ⋅ x) = m ⋅ to_fun x

As noted in Section 2, the domain and codomain of a linear map are modules over
the same semiring. The same is true in the definition of linear equivalences:

structure linear_equiv (R : Type u) (M1 : Type v) (M2 : Type w)
[semiring R] [add_comm_monoid M1] [add_comm_monoid M2] [module R M1]
[module R M2] extends linear_map R M1 M2, add_equiv M1 M2

The type signature of a semilinear map2 is more complicated, involving two scalar
semirings and a ring homomorphism between them. It no longer makes sense to extend
mul_action_hom, since the multiplicative actions are over different scalar types, so we
instead add the field map_smul directly. The arguments R and S can be inferred from σ
and are thus marked as implicit. The type R →+∗ S is the type of ring homomorphisms
from R to S.

2In our mathlib contribution we did not rename the type linear_map to semilinear_map. This simplified
the refactor and makes the definition easier to find for beginners. For the sake of clarity in this paper, we
refer to the generalized type by the more accurate name.
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structure semilinear_map {R : Type∗} {S : Type∗} [semiring R]
[semiring S]

(σ : R →+∗ S) (M1 : Type∗) (M2 : Type∗)
[add_comm_monoid M1] [add_comm_monoid M2] [module R M1] [module S M2]
extends add_hom M1 M2 :=

(map_smul′ : ∀ (r : R) (x : M1), to_fun (r ⋅ x) = (σ r) ⋅ to_fun x)

While the type signature has grown more complicated, the constructor for a
semilinear map is quite similar to that of a linear map:

example {R : Type∗} {S : Type∗} [semiring R] [semiring S]

(σ : R →+∗ S) (M1 : Type∗) (M2 : Type∗)
[add_comm_monoid M1] [add_comm_monoid M2] [module R M1] [module S
M2] :

semilinear_map σ M1 M2 :=
{ to_fun := _, -- M1 → M2

map_add′ := _, -- ∀ (x y : M1), to_fun (x + y) = to_fun x + to_fun y

map_smul′ := _ } -- ∀ (r : R) (x : M1), to_fun (r ⋅ x) = σ r ⋅ to_fun
x

The generalization to semilinear equivalences is similar, but more involved in order
to gracefully handle inversion of such maps. The additional parameter σ′ and the
ring_hom_inv_pair type class are explained in Section 4.3.

structure semilinear_equiv {R : Type∗} {S : Type∗} [semiring R]
[semiring S]

(σ : R →+∗ S) {σ′ : S →+∗ R} [ring_hom_inv_pair σ σ′]
[ring_hom_inv_pair σ′ σ] (M1 : Type∗) (M2 : Type∗)
[add_comm_monoid M1] [add_comm_monoid M2] [module R M1] [module S M2]
extends linear_map σ M1 M2, add_equiv M1 M2

4.2 Notation for semilinear maps

One can see from these definitions that semilinear maps are not a drop-in replacement
for linear maps. The type signature is different, even when looking only at explicit
arguments. To convert an R-linear map to a semilinear map, one must know to invoke
ring_hom.id R, the identity ring homomorphism on R.

Given how frequently linear maps appear in mathlib, this refactor threatened to
be painful. Our job was made immensely easier by the use of notation. Before our
refactor mathlib used the notation M1 →l[R] M2 to stand for for linear_map R M1 M2.
By redefining this notation to stand for semilinear_map (ring_hom.id R) M1 M2 we
were largely able to avoid breaking definitions and proofs throughout the library. The
same approach, with notation M1 ≃l[R] M2, worked to generalize linear equivalences
to semilinear equivalences. We introduced similar notation M1 →sl[σ] M2 to stand
for semilinear_map σ M1 M2, and M1 →l⋆[R] M2 to stand for a semilinear map with
respect to a fixed involution such as complex conjugation.

The composition of linear maps proved to be a complication. As we note in
Section 4.3, an additional type class must be inferred to justify that two semilinear
maps can be composed. This inference was fragile in the presence of other features,
like implicit coercions, that complicate elaboration. We introduced notation ○l for
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Linear Conjugate-linear Semilinear Meaning
Map M1 →l[R] M2 M1 →l⋆[R] M2 M1 →sl[σ] M2 Between mod-

ules; factors
over addition
and scalar
multiplication

Continuous
map

M1 →L[R] M2 M1 →L⋆[R] M2 M1 →SL[σ] M2 Between
topological
modules; a
continuous
map

Equivalence M1 ≃l[R] M2 M1 ≃l⋆[R] M2 M1 ≃sl[σ] M2 An invertible
map

Isometry M1 ≃li[R] M2 M1 ≃li⋆[R] M2 M1 ≃sli[σ] M2 Between
normed
modules;
a norm-
preserving
equivalence

Fig. 1 Notation for various classes of (semi)linear operators that appear in this paper

the composition of linear maps, using ring_hom.id to justify the composition, and
manually inserted this notation where needed.

For our new definition to be useful, theorems stated for linear maps M1 →l[R]

M2 needed to be upgraded to theorems about semilinear maps M1 →sl[σ] M2 when
possible. Doing so is mostly mechanical and our use of notation let us approach this
without hurry. Because theorems generalized to semilinear maps still apply directly to
the linear case we were able to do this generalization incrementally from the bottom
up. In particular, several more specialized classes of linear maps and equivalences are
also present in mathlib (Figure 1). Our bottom-up approach allowed us to break down
the refactor into more manageable pieces by generalizing these one at a time.

4.3 Composition of semilinear maps

Composition of maps is complicated by this generalization. The composition of two
linear maps is straightforward: it is easy to check that the composition of the underlying
functions preserves addition and scalar multiplication. With semilinear maps one must
also compose the homomorphisms between scalar rings. Given f : M1 →sl[σ12] M2 and
g : M2 →sl[σ23] M3, we would naturally end up with g.comp f : M1 →sl[σ23.comp

σ12] M3.
This ends up being awkward to handle in many common situations. Suppose we

wish to state that f : M1 →sl[σ12] M2 and g : M2 →sl[σ21] M1 are inverse maps:
f.comp g = (id : M1 →l[R] M1). This statement is not type-correct, since the ring
homomorphism on the left is σ12.comp σ21 and the one on the right is the identity. Such
an issue appears in practice, for example, when defining the adjoint as a conjugate-linear
map (Section 6).
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To solve this issue, we introduce a type class ring_hom_comp_triple that states
that two ring homomorphisms compose to a third.

class ring_hom_comp_triple [semiring R1] [semiring R2] [semiring R3]

(σ12 : R1 →+∗ R2) (σ23 : R2 →+∗ R3) (σ13 : out_param (R1 →+∗ R3)) :
Prop :=

(comp_eq : σ23.comp σ12 = σ13)

We register a number of global instances of this class. We then use the
ring_hom_comp_ triple type class in the definition of composition.

def semilinear_map.comp {R1 R2 R3 : Type∗} {M1 M2 M3 : Type∗}
[semiring R1] [semiring R2] [semiring R3]
[add_comm_monoid M1] [add_comm_monoid M2] [add_comm_monoid M3]
{mod_M1 : module R1 M1} {mod_M2 : module R2 M2} {mod_M3 : module R3
M3}

{σ12 : R1 →+∗ R2} {σ23 : R2 →+∗ R3} {σ13 : R1 →+∗ R3}
[ring_hom_comp_triple σ12 σ23 σ13]
(g : M2 →sl[σ23] M3) (f : M1 →sl[σ12] M2) :
(M1 →sl[σ13] M3)

While this may appear to be a rather verbose type signature for the composition of
maps, it allows us to avoid the above problem without introducing further complica-
tions. In common situations, the appropriate global instances generate the necessary
ring_hom_comp_triple argument without input from the user. For example, the fol-
lowing global instance allows for the composition of two (genuine) linear maps, or more
generally for the composition of a semilinear map with a linear map.

instance [semiring R1] [semiring R2] {σ12 : R1 →+∗ R2} :
ring_hom_comp_triple (ring_hom.id R1) σ12 σ12

Another instance helps in the setting of conjugate-linear maps.3

instance [comm_semiring R] [star_ring R] :
ring_hom_comp_triple (conj R) (conj R) (ring_hom.id R)

We expand on the types here in Section 5.1; in concrete terms, this instance says that
the conjugation operation on a type supporting conjugation is an involution. This
allows us to compose two conjugate-linear maps to obtain, definitionally, a linear map.
The intention is that users should never work directly with a composition g.comp f :

M1 →sl[σ23.comp σ12] M3, but instead with g.comp f : M1 →sl[σ13] M3 for some
σ13 satisfying ring_hom_comp_triple σ12 σ23 σ13, which is strictly more general.

Similar issues appear with semilinear equivalences, specifically when defining the
symmetric equivalence: if e : E ≃sl[σ] F, the “natural” definition of the symmet-
ric equivalence would give e.symm : F ≃sl[σ.symm] E. Some ring homomorphisms,
notably conjugation on C, have the property that σ.symm = σ. But these equalities
are rarely definitional and spurious symms can block type checking. Introducing a new
type class ring_hom_inv_pair that states that two ring homomorphisms are inverses
of each other, analogous to the type class ring_hom_comp_triple described above,
again solves this issue.

3In fact, we do not state this instance explicitly; it is derived by type class inference from
the ring_hom_inv_pair instance for conj (see below) and yet another global instance generating a
ring_hom_comp_triple with the identity from a ring_hom_inv_pair.
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class ring_hom_inv_pair [semiring R1] [semiring R2] (σ : R1 →+∗ R2)

(τ : out_param (R2 →+∗ R1)) : Prop :=
(comp_eq : τ.comp σ = ring_hom.id R1)
(comp_eq2 : σ.comp τ = ring_hom.id R2)

Now, with a suitable instance stating that the conjugation operation on a type sup-
porting conjugation is its own inverse, we can work with a conjugate-linear equivalence
e : E ≃l⋆[R] F, i.e. e : E ≃sl[conj] F, over scalars of that type, and have that its
inverse e.symm be genuinely of type F ≃l⋆[R] E.

instance [comm_semiring R] [star_ring R] : ring_hom_inv_pair (conj R)
(conj R)

5 Fréchet–Riesz representation theorem

In the following three sections we describe results that we were able to formalize at the
proper level of generality thanks to our refactor. By the “proper level” of generality,
we mean that our results hold generically over the real and complex numbers without
case splits or separate declarations.

5.1 The is_R_or_C type class

Many results in functional analysis, including those presented here, hold for a field
K ∈ {R,C}. Such results are usually presented in the literature by giving proofs for
the complex case, with the real case following in the obvious way: replace complex
conjugation by the identity, i by zero, and so on.

Before beginning our refactor, we introduced a type class is_R_or_C to mathlib
used to formalize this kind of result. A type that instantiates is_R_or_C is a complete
nondiscrete field with (real) norm containing an element i and functions conj, re and
im that satisfy a number of ad-hoc axioms chosen to mimic the behavior of a field that
is either R or C. The conj operator is an involutive ring homomorphism, enabling
the notation discussed in Section 4.3. Two global instances stating is_R_or_C R and
is_R_or_C C allow theorems over the generic type class to be specialized immediately
to either concrete type. The conjugation operator conj is definitionally equal to the
identity function in the real case and the complex conjugation function in the complex
case. We note an experiment with a similar type class in Isabelle [10].

Working over an is_R_or_C field enables many nice features. In particular, the
conjugation operator conj is definitionally equal to the identity function in the real case
and the complex conjugate in the complex case. Hilbert spaces in mathlib are defined
over is_R_or_C fields. Given two Hilbert spaces E and F over a field K, conjugate-linear
maps E ≃l⋆[K] F are precisely maps which are semilinear with respect to conj, and
thus in the real case are linear maps by definition. Within mathlib, this type class has
already been used extensively beyond the results mentioned in this paper, notably
by Sébastien Gouëzel for stating in correct generality the Hahn–Banach theorem, the
smooth case of the inverse function theorem, and more.
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local notation ‵K‵ := algebra_map R _

class is_R_or_C (K : Type∗) extends nondiscrete_normed_field K,
star_ring K, normed_algebra R K, complete_space K :=

(re : K →+ R)
(im : K →+ R)
(I : K)
(I_re_ax : re I = 0)

(I_mul_I_ax : I = 0 ∨ I ∗ I = -1)

(re_add_im_ax : ∀ (z : K), K (re z) + K (im z) ∗ I = z)
(of_real_re_ax : ∀ r : R, re (K r) = r)
(of_real_im_ax : ∀ r : R, im (K r) = 0)

(mul_re_ax : ∀ z w : K, re (z ∗ w) = re z ∗ re w - im z ∗ im w)

(mul_im_ax : ∀ z w : K, im (z ∗ w) = re z ∗ im w + im z ∗ re w)
(conj_re_ax : ∀ z : K, re (conj z) = re z)
(conj_im_ax : ∀ z : K, im (conj z) = -(im z))
(conj_I_ax : conj I = -I)

(norm_sq_eq_def_ax : ∀ (z : K), ∥z∥^2 = (re z) ∗ (re z) + (im z) ∗ (im
z))

(mul_im_I_ax : ∀ (z : K), (im z) ∗ im I = im z)

(inv_def_ax : ∀ (z : K), z−1 = conj z ∗ K ((∥z∥^2)−1))
(div_I_ax : ∀ (z : K), z / I = -(z ∗ I))

Fig. 2 The is_R_or_C type class is satisfied only by fields isomorphic to R or C. The star_ring

assumption endows K with an involutive operator conj that respects addition and multiplication.

5.2 Fréchet–Riesz representation theorem

Our first application of semilinear maps is in proving the Fréchet–Riesz representation
theorem. While the real case has been formalized in Coq [17] and Mizar [18], and the
complex case in Isabelle [19], we are not aware of a development that unifies the two.4

Given a Hilbert space E, its dual space E∗ consists of the set of continuous linear
functionals on E (i.e. E∗ = {f ∶ E → K ∣ f is linear and continuous}). The dual space
certainly includes elements of the form fv that map w ∈ E to ⟨v,w⟩, and the Fréchet–
Riesz representation theorem states that all elements of the dual space are of this form.
That is, there exists an (in fact, isometric) equivalence between E and E∗ that maps v
to to fv.

The difficulty in formalizing this is that while this equivalence is linear in the real
case, in the complex case, it is conjugate-linear. The challenge is to construct this object
in such a way that (1) there is a common definition for both the real and complex
case, and (2) the added complication of conjugate-linearity is completely transparent
in the real case. Before our refactor mathlib simply had two separate constructions. We
are able to replace those two constructions with the following, which satisfies both
requirements stated above:

def to_dual [is_R_or_C K] [inner_product_space K E] [complete_space
E] :

4This theorem should not be confused with the Riesz–Markov–Kakutani representation theorem, which
has been formalized in Mizar, PVS (unfortunately referred to as the “Riesz representation theorem”), and
possibly other proof assistants.
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E ≃li⋆[K] normed_space.dual K E

lemma to_dual_apply [is_R_or_C K] [inner_product_space K E]
[complete_space E] {x y : E} : to_dual K E x y = ⟪x, y⟫
Read aloud this definition says that “a real or complex Hilbert space E is isometri-

cally conjugate-isomorphic to its dual space.” But when specialized to the real case, the
statement is definitionally equal to “E is isometrically isomorphic to its dual space.”

Our proof of this theorem does not differ from the real version of the proof in
mathlib prior to our refactor. In fact, the patch unifying the real and complex versions5

added only 45 lines of code and removed 79; the only change beyond rearranging and
documentation was to generalize the statement of the theorem. The Lean implementa-
tion of the orthogonal projection on real inner product spaces, a tool used in the proof,
had been written by Zhouhang Zhou as a port of work in Coq by Boldo et al. [17].

6 Adjoints of operators on Hilbert spaces

Given a continuous linear map A between two Hilbert spaces E and F , the adjoint of
A is the unique continuous linear map A∗ ∶ F → E such that for all x ∈ E and y ∈ F ,
⟨y,Ax⟩F = ⟨A∗y, x⟩E . The adjoint satisfies a number of properties: it is involutive
(i.e. (A∗)∗ = A), it is an isometry, and, most importantly for our purposes here, it is
conjugate-linear. Hence, it was natural to bundle it in mathlib as a conjugate-linear
isometric equivalence as follows:

def continuous_linear_map.adjoint [is_R_or_C K] [inner_product_space K
E]

[inner_product_space K F] [complete_space E] [complete_space F] :
(E →L[K] F) ≃li⋆[K] (F →L[K] E)

lemma continuous_linear_map.adjoint_inner_left [is_R_or_C K]
[inner_product_space K E] [inner_product_space K F] [complete_space
E]

[complete_space F] (A : E →L[K] F) (x : E) (y : F) :
⟪continuous_linear_map.adjoint A y, x⟫ = ⟪y, A x⟫
This definition fully exploits the algebraic formalism built for semilinear maps,

including the composition mechanism of Section 4.3. For example, the statement
that the composition of the adjoint operation with itself is equal to the identity map
from E →L[K] F to itself (a “true” K-linear map) would not typecheck without the
ring_hom_comp_triple mechanism.

In finite dimension, every linear map is a continuous linear map, so the adjoint
construction actually applies to every linear map. We provide this construction as
linear_map.adjoint for the benefit of future users interested only in the finite-
dimensional setting.

An operator T on a Hilbert space is said to be self-adjoint if T = T ∗ and
normal if T ∗T = TT ∗. We allow these definitions to apply both to the finite-
dimensional setting with linear_map.adjoint and to the general setting with
continuous_linear_map.adjoint by in fact writing these definitions in the more

5https://github.com/leanprover-community/mathlib/pull/9924
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general context of a star_ring, a ring equipped with a fixed involutive ring
homomorphism.

def self_adjoint [ring R] [star_ring R] : add_subgroup R :=
{ carrier := {x | star x = x}, . . . }

def is_star_normal [ring R] [star_ring R] (x : R) :=

star x ∗ x = x ∗ star x

When R is the ring E →l[K] E of linear endomorphisms of a finite-dimensional
inner product space E (with ring operation composition), the involution star is
linear_map.adjoint. When R is the ring E →L[K] E of continuous linear endomor-
phisms of a Hilbert space E, the involution star is continuous_linear_map.adjoint.

7 Structure theory of Hilbert spaces

7.1 The dependent-ℓp construction

The spectral theorem, in finite dimension also known as the diagonalization theorem,
expresses an operator on a Hilbert space in the canonical form of a “diagonal” operator.
To describe this canonical form, one needs some version of the Hilbert sum construction,
described in this section.

Before we started, mathlib already had a finitary version of this construction, namely
a type pi_Lp denoting the product of finitely many normed spaces (note that the p

parameter is not actually used in its definition):

def pi_Lp {ι : Type u} (p : R) (G : ι → Type v) : Type (max u v) :=
Π (i : ι), G i

as well as a normed space structure that depends on p on this product, and, in the
case p = 2, an inner product space structure:

instance pi_Lp.inner_product_space {K : Type w} [is_R_or_C K]
{ι : Type u} [fintype ι] (G : ι → Type v)
[Π (i : ι), inner_product_space K (G i)] :
inner_product_space K (pi_Lp 2 G)

We require the general version of this construction, with a possibly-infinite index
set ι. We first define a predicate mem_ℓp f p on dependent functions in Π (i :

ι), G i and extended nonnegative real numbers p, which, for p = 2, amounts to
the norm-squared of the function being a convergent sum. The associated subset of
Π (i : ι), G i is named lp G p:

def lp {ι : Type u} (G : ι → Type v) [Π (i : ι), normed_group (G i)]
(p : R≥0∞) : add_subgroup (Π (i : ι), G i) :=

{ carrier := {f | mem_ℓp f p}, . . . }

In the case p = 2 this inner product space is known as the Hilbert sum of the family
G. For general p, in the special case of the trivial family λ (i : ι), K of normed
spaces, this construction gives what is traditionally called ℓp(ι,K). We will refer to the
general construction lp as the dependent-ℓp construction.

We prove lp G p to be an additive subgroup, and for p = 2 equip it with an inner
product space structure.
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instance lp.inner_product_space {ι : Type u} {K : Type w} [is_R_or_C K
]

{G : ι → Type v} [Π (i : ι), inner_product_space K (G i)] :
inner_product_space K (lp G 2)

This is a reasonably labor-intensive construction (some 500 lines of code), the
difficulties being a series of small analytic arguments about the convergence of the
sums involved. It is closely analogous to Rémy Degenne’s mathlib construction (see also
related work in Isabelle [20]) of the normed space structure on Lp(X,G), a subtype
of the type of equivalence classes of measurable functions from a measure space X
into a normed space G, which we also need in this work (see Section 9.2). However,
neither construction is a strict generalization of the other: the Lp construction allows
for integrals with respect to an arbitrary measure rather than just sums, whereas the
dependent-ℓp construction applies to dependent functions of type Π (i : ι), G i

in which the “codomain” varies depending on the argument. We in fact need this
dependent property for the spectral theorem.

A further analytic argument establishes the completeness of lp. The key step here
is an argument that a pointwise limit of a uniformly-bounded sequence of elements of
lp is itself in lp. is A Hilbert space is by definition a complete inner product space
and therefore this establishes that the Hilbert sum lp G 2 is a Hilbert space.

instance lp.complete_space {ι : Type u} {G : ι → Type v}
[Π (i : ι), normed_group (G i)] [∀ (i : ι), complete_space (G i)]
{p : R≥0∞} [fact (1 ≤ p)] : complete_space (lp G p)

Finally, given a Hilbert space E of interest, an important argument establishes a
mechanism for “collating” a family of isometries from the summands G i into E to an
isometric isomorphism from lp G 2 into E. It is sufficient (and necessary) that the
images of the family of isometries form a mutually-orthogonal family of subspaces of
E, and that their joint span be dense in E.

def orthogonal_family.linear_isometry_equiv [is_R_or_C K]
[inner_product_space K E] [complete_space E]
[Π (i : ι), inner_product_space K (G i)] {V : Π (i : ι), G i →li[K]
E}

(hV : orthogonal_family K V) [∀ (i : ι), complete_space (G i)]

(hV′ : (⊔ (i : ι), (V i).to_linear_map.range).topological_closure = ⊺
) :

E ≃li[K] (lp G 2)

We also provide the finitary, i.e. pi_Lp, version of this construction.

def direct_sum.submodule_is_internal.isometry_L2_of_orthogonal_family
[is_R_or_C K] [inner_product_space K E] [fintype ι] [decidable_eq ι]
{V : ι → submodule K E} (hV : direct_sum.submodule_is_internal V)

(hV′ : orthogonal_family K (λ (i : ι), (V i).subtypeli)) :
E ≃li[K] pi_Lp 2 (λ (i : ι), V i)

7.2 Hilbert bases

The current definition of bases in mathlib, due to Reid Barton, Mario Carneiro and
Anne Baanen, dates back to 2021. Given a vector space E over R, a basis for E is
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given by an isomorphism between E and finitely-supported functions from an index
type ι to R. This is implemented via the structure

structure basis (ι R E : Type∗) [semiring R] [add_comm_monoid E]
[module R E] :=

(repr : E ≃l[R] (ι →0 R))

Note that this looks somewhat different from the traditional definition as a set of
linearly-independent vectors that span the space.

Our treatment of Hilbert bases is analogous: rather than directly following the
traditional definition as an orthogonal set in a Hilbert space with a dense span, we
instead choose to define a Hilbert space version of repr in an appropriate way. More
precisely, we replace the isomorphism between E and finitely-supported functions from
ι to R by a bijective linear isometry between E and ℓ2(ι,K) (this is the traditional ℓ2,
i.e., the Hilbert sum of ι copies of K, for which we locally introduce the notation ℓ²(ι,
K) in mathlib). Moving to an isometry allows us to preserve the inner product, and we
include infinite sums by replacing finitely-supported functions by square-summable
functions from ι to K.

The result looks like the following. We define a Hilbert basis of a Hilbert space E
to be a structure whose single field hilbert_basis.repr is an isometric isomorphism
of E with ℓ²(ι, K). This parallels the definition of “basis”, as an isomorphism of an
R-module with ι →0 R.

structure hilbert_basis (ι K E : Type∗) [is_R_or_C K]
[inner_product_space K E] :=

(repr : E ≃li[K] ℓ²(ι, K))

We can then recover the traditional interpretation as a family of vectors as an
instance of the function-coercion (has_coe_to_fun) typeclass:

instance [is_R_or_C K] [inner_product_space K E] :
has_coe_to_fun (hilbert_basis ι K E) (λ _, ι → E) :=

{ coe := λ b i, b.repr.symm (lp.single 2 i (1:K)) }

This allows us to treat b : hilbert_basis ι K E as a function from ι to E, such that
b i corresponds to the i-th basis vector. These are orthogonal and have dense span.

We then get the following fundamental property of Hilbert bases:

lemma hilbert_basis.repr_apply_apply [is_R_or_C K]
[inner_product_space K E]

(b : hilbert_basis ι K E) (v : E) (i : ι) :
b.repr v i = ⟪b i, v⟫
The main point of Hilbert bases is to be able to represent any vector in the space

as an infinite linear combination of vectors from the basis. Here is what this fact looks
like in our treatment of Hilbert bases:

lemma hilbert_basis.has_sum_repr [is_R_or_C K] [inner_product_space K
E]

(b : hilbert_basis ι K E) (x : E) :
has_sum (λ i, b.repr x i ⋅ b i) x

To construct a Hilbert basis from a traditional representation as an orthonormal
family of vectors whose span is dense in the whole module is a Hilbert basis, we can
use the following definition:
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def hilbert_basis.mk [is_R_or_C K] [inner_product_space K E]
[complete_space E] {v : ι → E} (hv : orthonormal K v)
(hsp : (span K (set.range v)).topological_closure = ⊺) :
hilbert_basis ι K E

Finally, we also proved the fact that every Hilbert space admits a Hilbert basis,
which uses Zorn’s lemma:

lemma exists_hilbert_basis (K E : Type∗) [is_R_or_C K]
[inner_product_space K E] [complete_space E] :
∃ (w : set E) (b : hilbert_basis w K E), (b : w → E) = (coe : w →
E)

Notice that paper versions of this statement often require separability of the Hilbert
space, since they additionally stipulate that a Hilbert basis must be countable. This is
not the case for us, and in the non-separable case, we simply get an uncountable index
type ι.

8 Versions of the spectral theorem

8.1 Common outline of the spectral theorems

A diagonal operator on lp G 2 or pi_Lp 2 G is an operator that, for some fixed
sequence of scalars µ : ι → K, sends each dependent function f : Π (i : ι),
G i to the pointwise-rescaled function λ i, µ i ⋅ f i. The spectral theorem for
compact self-adjoint (respectively, normal) operators states that such an operator
over is_R_or_C (respectively, C) is equivalent to a diagonal operator on lp G 2,
for some family of inner product spaces G. The finite-dimensional special case, the
diagonalization theorem, states that a normal endomorphism of a finite-dimensional
inner product space over C is equivalent to a diagonal operator on some pi_Lp 2 G.

The key point of all such theorems, which we defer discussing to Section 8.2, is a
proof that every operator from the stated class has an eigenvalue (unless the operator
is the trivial operator on the trivial vector space). The proof of this important point is
what differs from theorem to theorem. In this subsection we discuss the common part
of the proofs of the theorems, namely the reduction to the existence of an eigenvalue.

This part is essentially algebraic and is carried out for a endomorphism of an inner
product space E that satisfies the following property, common to those three cases:

def inner_product_space.is_normal (T : E →l[K] E) : Prop :=

∃ (T′ : E →l[K] E), T′ ∗ T = T ∗ T′ ∧ ∀ x y, ⟪T′ x, y⟫ = ⟪x, T y⟫

We first show that the eigenspaces of such an operator are mutually orthogonal.

lemma orthogonal_family_eigenspaces [is_R_or_C K]
[inner_product_space K E]

{T : E →l[K] E} (hT : inner_product_space.is_normal T) :
orthogonal_family K (λ (µ : K), (eigenspace T µ).subtypeli)

This puts us in a position to apply the final construction from Section 7.1 to the
collection of eigenspaces of T . Specifically, if the completeness property (⊔ (µ : K),
(eigenspace T µ)).topological_closure = ⊺ or its finite-dimensional analogue
can be established, then those results establish an isometric isomorphism between E
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and the Hilbert sum of its own eigenspaces. It is easy to check that the operator T ,
when transferred by this isometric isomorphism to the Hilbert sum, is diagonal.

A further sequence of lemmas leads to this completeness property, and it
is here that the eigenvalue existence result is required. It is shown that an
inner_product_space.is_normal operator preserves orthogonal complements of
eigenspaces.

lemma invariant_orthogonal_eigenspace [is_R_or_C K]
[inner_product_space K E]

{T : E →l[K] E} (hT : inner_product_space.is_normal T) (µ : K) (v :
E)

(hv : v ∈ (eigenspace T µ)⊥) :

T v ∈ (eigenspace T µ)⊥

Such an operator preserves the mutual orthogonal complement of all its eigenspaces.

lemma orthogonal_supr_eigenspaces_invariant [is_R_or_C K]
[inner_product_space K E] {T : E →l[K] E}
(hT : inner_product_space.is_normal T) {∣v : E∣}
(hv : v ∈ (⊔ (µ : K), eigenspace T µ)⊥) :

T v ∈ (⊔ (µ : K), eigenspace T µ)⊥

The restriction of such an operator to this mutual orthogonal complement, which is
therefore well-defined, itself has no eigenvalues.

lemma orthogonal_supr_eigenspaces [is_R_or_C K] [inner_product_space K
E]

{T : E →l[K] E} (hT : inner_product_space.is_normal T) (µ : K) :
eigenspace (T.restrict (orthogonal_supr_eigenspaces_invariant hT)) µ

= ⊥

From here, if the existence of an eigenvalue for all nontrivial operators
in the class considered is known, by contraposition the subspace (⊔ (µ
: K), eigenspace T µ)⊥ (being the domain of the operator T.restrict

(orthogonal_supr_eigenspaces_invariant hT), which has no eigenvalues) must
be trivial. Standard Hilbert space theory implies that the subspace ⊔ (µ : K),
eigenspace T µ must be dense, the desired completeness result.

8.2 Existence of an eigenvalue

The first version of the spectral theorem we prove is for normal endomorphisms of a
finite-dimensional inner product space over C.
def diagonalization [inner_product_space C E] [finite_dimensional C E]

{T : E →l[C] E} (hT : is_star_normal T) :
E ≃li[C] pi_Lp 2 (λ µ : eigenvalues T, eigenspace T µ)

lemma diagonalization_apply_self_apply [inner_product_space C E]
[finite_dimensional C E] {T : E →l[C] E} (hT : is_star_normal T) (v
: E)

(µ : eigenvalues T) :
diagonalization hT (T v) µ = (µ : C) ⋅ (diagonalization hT) v µ
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We also provide the more classical version of this theorem, stating that there exists an
orthonormal basis of eigenvectors of T.

For this class of operators, the proof of the existence of an eigenvalue is straightfor-
ward. In finite dimension, an endomorphism has a well-defined characteristic polynomial.
Over an algebraically closed field this polynomial must have a root, and this root is an
eigenvalue.

The second version of the spectral theorem we prove is for self-adjoint compact
operators on a Hilbert space. Here a map between normed spaces is said to be compact,
if the image of every bounded subset has compact closure.

def compact_map [nondiscrete_normed_field K] [normed_group E]
[normed_space K E] [normed_group F] (T : E → F) : Prop :=

∀ s : set E, metric.bounded s → is_compact (closure (T ′′ s))

A compact linear map is automatically continuous, so it is no loss of generality to take
T to be of type E →L[K] E. In this setting we state the spectral theorem as follows.

def diagonalization′ [is_R_or_C K] [inner_product_space K E]
[complete_space E] {T : E →L[K] E} (hT : T ∈ self_adjoint (E →L[K]
E))

(hT_cpct : compact_map T) :
E ≃li[K] (lp (λ µ, eigenspace (T : E →l[K] E) µ) 2)

lemma diagonalization_apply_self_apply′ [is_R_or_C K]
[inner_product_space K E] [complete_space E] {T : E →L[K] E}
(hT : T ∈ self_adjoint (E →L[K] E)) (hT_cpct : compact_map T) (v :
E)

(µ : K) :

diagonalization′ hT hT_cpct (T v) µ = µ ⋅ diagonalization′ hT hT_cpct
v µ

For this class of operators, the proof of the existence of an eigenvalue comes from a
long and delicate calculation involving the Rayleigh quotient, some 700 lines of code. It
is proved that local maxima/minima of the Rayleigh quotient are eigenvectors, that the
operator norm of T is the supremum of the absolute value of the Rayleigh quotient, and
(using the compactness of T) that the Rayleigh quotient of T achieves its maximum.

Having established in this project the basic properties of compact operators, the
infinite-dimensional theorem of the spectral theorem for compact normal operators
is also within reach. There, the proof of the existence of an eigenvalue comes from
an argument about the resolvent, a holomorphic function with values in the Banach
space E →l[C] E. The current development of complex analysis in mathlib by Yury
Kudryashov [21] is sufficiently general for this setting. However, this would not supersede
the spectral theorem we prove for compact self-adjoint operators: the latter works
generically over R and C, which is more elegant than to deduce it in the real setting
from the normal-operator version over C by making an argument about the operator’s
complexification.
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9 Fourier series and Parseval’s identity

9.1 Continuous functions are dense in Lp

This section describes a technical theorem in measure theory which is a preliminary
for the work on Fourier series in Subsection 9.2.

The theorem states that for a normal topological space α equipped with a weakly
regular Borel measure µ and a real normed space E, and for 1 ≤ p <∞, the bounded
continuous functions are dense in Lp(α,E). Note that for p =∞ this result is not true:
the characteristic function of the interval [0,∞) cannot be continuously approximated
in L∞(R,R).

In Lean we state this theorem by introducing the additive subgroup
Lp.bounded_continuous_function of Lp(α,E) consisting of equivalence classes con-
taining a bounded continuous representative, and stating that the topological closure
of this subgroup is equal to the “maximal” subgroup, E itself.

lemma bounded_continuous_function_dense [measurable_space α]
[topological_space α] [normal_space α] [borel_space α]
[normed_group E]

[second_countable_topology_either α E] [normed_space R E] {p : R≥
0∞}

[fact (1 ≤ p)] (hp : p ≠ ∞) (µ : measure α) [µ.weakly_regular] :
(bounded_continuous_function E p µ).topological_closure = ⊺

The proof is in three steps. First, it suffices to prove the result for a scalar multiple
of a characteristic function of a measurable set s. This is because simple functions
are dense in Lp, a result we obtained by refactoring an existing result in mathlib
(contributed by Zhouhang Zhou) for L1 functions. Here is the most convenient form of
that result, phrased as an induction principle: to prove something for an arbitrary Lp

function in a second countable Borel normed group, it suffices to show that

• the property holds for (multiples of) characteristic functions;
• is closed under addition;
• the set of functions in Lp for which the property holds is closed.

lemma Lp.induction [measurable_space α] [normed_add_comm_group E] {p :
R≥0∞}

[fact (1 ≤ p)] (hp_ne_top : p ≠ ∞) {µ : measure α} (P : Lp E p µ →
Prop)

(h_ind : ∀ (c : E) {s : set α} (hs : measurable_set s) (hµs : µ s <
∞),

P (Lp.simple_func.indicator_const p hs hµs.ne c))
(h_add : ∀ {∣f g∣}, ∀ hf : mem_Lp f p µ, ∀ hg : mem_Lp g p µ,
disjoint (support f) (support g) → P (hf.to_Lp f) → P (hg.to_Lp
g)
→ P ((hf.to_Lp f) + (hg.to_Lp g)))

(h_closed : is_closed {f : Lp E p µ | P f}) :
∀ f : Lp E p µ, P f

The second step in the denseness result for continuous functions is to approximate
the given measurable set s above by an open set and below by a closed set; this is a
consequence of the weak regularity of the measure µ. The third and final step is to
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find a continuous function interpolating between these two sets. This is a consequence
of Urysohn’s lemma, contributed to mathlib by Yury Kudryashov, and is the step at
which we use the fact that the domain α is normal.

We also establish several variants of this theorem. The version used for the Fourier
series construction is that for compact α and finite-measure µ, the natural continuous
linear map from C(α,E) to Lp(α,E) has dense range.

9.2 Construction of an explicit Hilbert basis for L2(S1,C)
Fourier series are usually considered for functions on a finite interval such as [0,1] or
[0,2π]. In this point of view, the Fourier coefficients of a function f ∶ [0,2π]→ C are
its integrals against the functions (eint)

n∈Z for t ∈ [0,2π].
In this work we take an approach which requires less special-case analysis, and

which is suggestive of the more general theory of the Pontrjagin dual of a topological
group: to consider Fourier series for functions on the unit circle S1 ∶= {z ∈ C ∶ ∣z∣ = 1},
in Lean circle. In this point of view, the Fourier coefficients are obtained as the
integrals of a function f ∶ S1 → C against the “monomial” functions (zn)n∈Z for z ∈ S1.

In more recent work, the “additive circle” R/2πZ has been constructed in mathlib
as a compact Hausdorff topological group and its Haar measure has been related to the
Lebesgue measure on its covering space R, allowing for a refactoring of the construction
of Fourier series to treat functions f ∶ R/2πZ → C. This unites the computational
convenience of the [0, 2π] definition with the theoretical convenience of the S1 definition.
This refactor featured work by Oliver Nash [22], Alex Kontorovich and David Loeffler
as well as the authors; we will not discuss it further in this article.

As the “monomial” functions (zn)n∈Z are central to the definition of Fourier series
and the proof of Parseval’s identity, we introduce them in Lean in several forms. Firstly
we define these functions as a Z-indexed family in the bundled continuous function
type C(S1,C):
def fourier (n : Z) : C(circle, C) :=
{ to_fun := λ z, z ^ n,
continuous_to_fun := _ }

(we omit the brief proof of their continuity). Later we introduce the unit Haar measure
[23] µ on S1 (in Lean haar_circle), from S1’s structure as a topological group, and
consider the monomial functions under the name fourier_Lp p as elements of the
space Lp(S1,C) (in Lean Lp C p haar_circle) with respect to this measure. (A
continuous function on a compact topological space equipped with a finite-volume
Borel measure is automatically in Lp.)

The linear span of the monomials (zn)n∈Z is easily checked to be a subalgebra (i.e.,
closed under multiplication), to be closed under conjugation, and to separate points.
Therefore, by the Stone-Weierstrass theorem, contributed to mathlib by Scott Morrison,
the functions fourier are dense (in the topology of uniform convergence) in C(S1,C).
lemma span_fourier_closure_eq_top :
(span C (range fourier)).topological_closure = ⊺

By the main theorem of Subsection 9.1, it follows that for each 1 ≤ p <∞, the linear
span of the monomials (zn)n∈Z is dense (in the Lp topology) in Lp(S1,C).
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lemma span_fourier_Lp_closure_eq_top
{p : R≥0∞} [fact (1 ≤ p)] (hp : p ≠ ∞) :
(span C (range (fourier_Lp p))).topological_closure = ⊺

The case of interest for us is p = 2: the space L2(S1,C) is a Hilbert space, with the
inner product of two functions given by the integral over S1 of the pointwise quantity
f(z)g(z). A straightforward computation shows that the monomials (zn)n∈Z are an
orthonormal set in this Hilbert space.

lemma orthonormal_fourier : orthonormal C (fourier_Lp 2)

Therefore, by the theory of Subsection 7.2, the family of functions fourier_Lp 2 can
be elevated to a Z-indexed Hilbert basis for L2(S,C):
def fourier_series : hilbert_basis Z C (Lp C 2 haar_circle)

Recall that this is by definition a bijective linear isometry from L2(S1,C) to
ℓ2(Z,C), accessed as fourier_series.repr. The agreement with the “traditional”
definition of the Fourier series of f ∈ L2(S1,C) as a Z-indexed family of complex
numbers obtained by integration against (zn)n∈Z is a consequence of the lemma
hilbert_basis.repr_apply_apply from Subsection 7.2:

lemma fourier_series_repr (f : Lp C 2 haar_circle) (i : Z) :

fourier_series.repr f i = ∫ z : circle, z ^ (-i) ∗ f z ∂ haar_circle

The L2 convergence of Fourier series is obtained from the lemma
hilbert_basis.has_sum_repr from Subsection 7.2:

lemma has_sum_fourier_series (f : Lp C 2 haar_circle) :
has_sum (λ i, fourier_series.repr f i ⋅ fourier_Lp 2 i) f

Finally, Parseval’s identity, that the sum of the squared norms of the Fourier
coefficients of f ∈ L2(S1,C) equals the L2 norm of f , is a direct consequence of the
fact that fourier_series.repr is constructed to be a bijective linear isometry:

lemma tsum_sq_fourier_series_repr (f : Lp C 2 haar_circle) :

Σ′ i : Z, ∥fourier_series.repr f i∥ ^ 2
= ∫ z : circle, ∥f z∥ ^ 2 ∂ haar_circle

By design, the mathematical arguments in this section are short and translate to
Lean without difficulty, requiring less than 200 lines of code in total. The mathematically
difficult arguments have all been covered in greater abstraction in the preliminary
work, as described in Subsection 7.2 and Subsection 9.1.

10 Frobenius-semilinear maps and isocrystals

Our formal development of semilinear maps was motivated by applications in functional
analysis to unify statements and proofs over R and C. But these maps are interesting
and fruitful objects of study in their own right. As an example of an interesting
result about semilinear maps that are not linear or conjugate-linear, we formalize the
one-dimensional case of a theorem of Dieudonné and Manin [9] (see Demazure [24,
chapter 4] for a classical exposition and Lurie [25] for a modern outline without proof),
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which classifies the isocrystals over an algebraically closed field of characteristic p > 0
(Section 2.6).

We denote the ring of p-typical Witt vectors over k by W k and the field of fractions
of this ring by K(p, k). This was defined in mathlib by Commelin and Lewis [26],
along with the Frobenius endomorphism frobenius : W k →+∗ W k.

For the remainder of this section, we work in a context where p is a prime natural
number and k is an integral domain of characteristic p with a pth root function.

variables (p : N) [fact p.prime]

{k : Type∗} [comm_ring k] [is_domain k] [char_p k p] [perfect_ring
k p]

Since the base ring k has characteristic p, frobenius satisfies the following property:

lemma coeff_frobenius_char_p (x : W k) (n : N) :
(frobenius x).coeff n = (x.coeff n) ^ p

The additional hypothesis that k has a pth root function implies that frobenius is in
fact an automorphism, and with k an integral domain, this induces an automorphism
on the field of fractions K(p, k). Locally we let φ(p, k) denote this map.

We will be interested in maps between K(p, k)-vector spaces that are semilinear
in φ (“Frobenius-semilinear”). To facilitate the use of these maps, we add an instance
of ring_hom_inv_pair (Section 4.3) for φ and its inverse. We also introduce notation
V →f l[p, k] V2 and V ≃f l[p, k] V2 for the types of Frobenius-semilinear maps and
equivalences.

An isocrystal is a vector space over the field K(p, k) additionally equipped with a
Frobenius-semilinear automorphism.

class isocrystal (V : Type∗) [add_comm_group V] extends module K(p,
k) V :=

(frob : V ≃f l[p, k] V)

We denote the map frob by Φ(p, k). We say two isocrystals over K(p, k) are
equivalent (denoted V ≃f i[p, k] V2) if there is a linear equivalence f : V ≃l[K(p,
k)] V2 which is “Frobenius-equivariant,” that is, for all x, Φ(p, k) (f x) = f

(Φ(p, k) x).
The Dieudonné–Manin theorem classifies the isocrystal structures in every finite

dimension, up to this notion of equivalence, over an algebraically closed field k. We
restrict our attention to the one-dimensional case, where the classification can be stated
quite explicitly. The field K(p, k) is naturally a vector space over itself with dimension
1. There is a standard family of Frobenius-semilinear automorphisms K(p, k) ≃f l[p,
k] K(p, k) indexed by the integers, namely p^m ⋅ φ(p, k) for each m : Z, where
the Frobenius automorphism φ(p, k) is itself considered as a Frobenius-semilinear
automorphism. This induces a Z-indexed family of distinct isocrystals which we refer
to as standard_one_dim_isocrystal p k m, and we prove that any one-dimensional
isocrystal is equivalent to one of the these standard isocrystals.

lemma classification [field k] [is_alg_closed k] [char_p k p]
[add_comm_group V] [isocrystal p k V] (h_dim : finrank K(p, k) V =
1) :

∃ (m : Z), nonempty (standard_one_dim_isocrystal p k m ≃f i[p, k] V)
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The key to proving this statement is finding, for any a, b : W k with nonzero
leading coefficients, a vector x : W k such that frobenius x ∗ a = x ∗ b. We define
such an x coefficient by coefficient by an intricate recursion that invokes the algebraic
closedness of k at each step to solve a new polynomial equation. The argument
requires us to mediate between different “levels” of polynomials—universal multivariate
polynomials over Z, and multivariate and univariate polynomials over k—which proved
challenging. Arithmetic operations on Witt vectors are notoriously complicated, and
the machinery for universal calculations introduced by Commelin and Lewis [26] does
not apply here. This key lemma takes 550 lines to establish.

The remainder of the proof of the isocrystal classification theorem was remarkably
straightforward. We needed to extend mathlib’s Witt vector library to show that when
k is an integral domain, W k is too. Modulo this and the previous key lemma, the
proof (including the definitions of Frobenius-semilinear maps and isocrystals) takes
only 100 lines.

The key lemma also constitutes the central argument in establishing that Witt
vectors are a discrete valuation ring, a theorem we established together with Johan
Commelin.

instance [field k] [char_p k p] [perfect_ring k p] :
discrete_valuation_ring (W k)

11 Related work

Given the fundamental importance of linear algebra, it is no surprise that theories have
been developed in many proof assistants. To our knowledge, none of these libraries
define semilinear maps, none prove the spectral theorem for compact operators, and
none prove any of the results we describe generically over R and C.

Mahmoud, Aravantinos, and Tahar [27] and Afshar et al. [28] both describe devel-
opments in HOL Light of complex vector spaces. Both use encodings inherently specific
to the complex case; they do not generalize the work over the reals by Harrison [29].

Aransay and Divasón [30] introduce vector spaces over arbitrary fields to
Isabelle/HOL, using a careful combination of type classes and Isabelle’s locale feature.
A paper by the same authors [10] describes an experiment to generalize the Isabelle
definition of a real inner product space to a larger class of fields, using a type class that
seems analogous to our class is_R_or_C (Section 5.1). Implementing this idea systemat-
ically would probably involve providing a locale-based generalization of euclidean-space
at the beginning of the Isabelle/HOL mathematical analysis library, and the authors
do not take this project on, despite noting how useful the generalization would be.

An Isabelle Archive of Formal Proofs entry by Caballero and Unruh [19] duplicates
much of the real vector space development in the complex setting, in the process intro-
ducing conjugate-linear maps and the complex adjoint operator. Little infrastructure
seems to be shared between the real and complex cases. Their development includes
a proof of Fréchet–Riesz over C, but does not indicate how it might specialize to R.
Also motivated by applications in quantum computation, Bordg et al. [31] define the
conjugate-transpose, the analogue of the adjoint in the matrix setting, but again do
not generalize to arbitrary fields.
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Perhaps related to the more expressive type theory, Coq developments of linear
algebra have taken more advantage of type polymorphism. The Mathematical Com-
ponents library [32] features a theory of modules over arbitrary scalar rings, as does
Coquelicot [5]. Building on both these libraries, MathComp-Analysis [33] develops
structures used in functional analysis. A linear_for predicate in Mathematical Com-
ponents expresses a concept which is mathematically slightly more general than our
semilinear_map definition, but which has less convenient properties under composi-
tion and inversion. In a branch of the Mathematical Components repository,6 Cohen
defines Hermitian forms, which diverge in behavior over R and C similar to conjugate-
linear maps. The approach here has some similarities to ours, but preserves fewer
definitional equalities; in particular, our conjugate-linear maps on R are definition-
ally linear maps, while the analogous statement does not hold for the Mathematical
Components approach to Hermitian forms.

Boldo et al. [17] prove the real case of Fréchet–Riesz using Coquelicot, on the way
to the Lax–Milgram theorem, but do not address the complex case. Narita et al. [18] do
the same in Mizar. Cohen proves the diagonalization theorem for normal matrices in the
same of the Mathematical Components repository.6 This is mathematically equivalent
to the diagonalization theorem for normal endomorphisms of a finite-dimensional space
described at the start of Section 8.2. Cohen’s matrix version could more easily be
converted for use in verified numerical analysis, whereas the abstract linear-map version
we provide is more convenient in mathematical applications and also admits a more
streamlined proof.

An extensive development of Fourier series was written by Harrison in HOL Light7,
and has been ported to Isabelle [34] by Paulson. This treatment covers quite a bit of
the same ground as ours, notably the theorem on L2 convergence of Fourier series.
It also covers numerous topics not treated by us, including the Riemann-Lebesgue
lemma (this is also ongoing work in Lean of David Loeffler), Dini’s test and Cesaro
summability. It is a much more concrete treatment, proving numerous results in the
special setting of L2([0,2π],R) which we deduce from the abstract theory of Hilbert
bases. Notably, it appears not to contain Parseval’s identity, which comes effectively
for free from our development of Hilbert space theory. A further minor difference is
that this development takes place over R (with trigonometric functions) rather than
over C (with exponential/monomial functions), due to the restriction to real scalars in
these languages’ functional analysis libraries.

A Metamath treatment of Fourier series by Glauco Siliprandi8 has less overlap with
ours, primarily treating Fourier series of continuous functions.

Supplementary information. We maintain a guide through the code corresponding
to this paper at https://robertylewis.com/semilinear-paper/.

Acknowledgments. We thank Johan Commelin for many conversations about
isocrystals and Johannes Hölzl for comments on work in Isabelle. We thank the mathlib
community and maintainer team for insightful comments and suggestions during code
review.

6 https://github.com/math-comp/math-comp/pull/207
7https://github.com/jrh13/hol-light/blob/master/100/fourier.ml
8https://us.metamath.org/mpeuni/fourier.html
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