
Formalizing the Ring of Witt Vectors

Johan Commelin
Robert Y. Lewis

Certified Programs and Proofs
Jan 17, 2021



Overview

We have:
defined the type of Witt vectorsWR over a base ring R
defined the ring structure onWR
proved thatW(Z/pZ) ' Zp

in the Lean proof assistant.

In this talk we will:
explain why this is an achievement.
see some techniques that made this formalization possible.

We will not:
cover much of the mathematics of Witt vectors.
see many details of the formalization.

1 11



Mathematical maturity

Witt vectors are a “mathematically mature” topic.

Don’t try to unfold all the details.
Follow high level strategies.

Proof assistants aren’t good at this! How to formalize?

Isolate the mathematics underlying these strategies.
Write meta code that simulates the reasoning patterns.

2 11



Defining Witt vectors

Fix a ring R and prime p. A p-typical Witt vector over R is a sequence of elements of R:

x = (. . . x2, x1, x0) xi ∈ R

We can add, subtract, andmultiply Witt vectors:

x + y = (. . . S2 (x2, x1, x0, y2, y1, y0), S1 (x1, x0, y1, y0), S0 (x0, y0))

where {Si} is a family of polynomials depending on p.

The details here are intricate.

3 11



Witt vector API

Tomake use of Witt vectors you need some operations:

Teichmüller τ : R→WR r 7→ (. . . , 0, 0, r) multiplicative, zero preserving
Verschiebung V : WR→WR (. . . , x2, x1, x0) 7→ (. . . , x1, x0, 0) additive

scalar multiplication [n] : WR→WR x 7→ n · x additive
Frobenius F : WR→WR li� r 7→ rp toWR ring hom

ghost map W : WR→ (N→ R) apply nth Witt polynomial ring hom, not injective

Challenge! How to prove properties of these operations without digging too deep into the
definition of ring operations?

4 11



Strategies for proving Witt vector operation identities

Strategy 1

1. First prove the identity for rings R in which p is invertible.
2. Then prove the identity for polynomial rings over the integers.
3. Finally, use the natural surjective ring homomorphismZ[(Xr)r∈R]→ R to deduce the
identity for arbitrary rings R.

Strategy 2

1. Ignore the fact that the ghost map is not injective in general.
2. Apply the ghost map to both sides of the identity, and prove that the resulting claim is
true in RN.

5 11



Strategy 2: high risk, high reward

Hazewinkel writes:

There are pitfalls in calculating with ghost components as is done here. Such a
calculation gives a valid proof of an identity or something else only if it is a universal
calculation; that is, makes no use of any properties beyond those that follow from
the axioms for a unital commutative ring only.

Mathematical maturity: if you don’t knowwhat you’re doing, following this strategy is
dangerous!

6 11



Polynomial functions

Definition
Let fR : WR→WR be a family of functions where R ranges over all commutative rings. fR is
a polynomial function if there is a family of polynomials ϕn ∈ Z[X0, X1, . . .] such that for
every commutative ring R and each n ∈ N and x = (. . . x1, x0) ∈WR,

fR(x)n = ϕn(x0, x1, . . .).

Theorem (extensionality)

Let fR, gR : WR→WR be polynomial functions. If for all x ∈WZ and n ∈ Nwe have

wn(fZ(x)) = wn(gZ(x)),

then fR = gR for every ring R.

7 11



Strategy 2, refined

Strategy 2

Show that both sides of the identity are polynomial functions.
Use extensionality to reduce this to a computation on ghost components.

Why is this good?
Polynomial functions are well behaved under composition.
Calculations on ghost components are mostly mechanical.

These identity proofs become almost completely automatic.

8 11



Identity proofs, automated

/-- The "projection formula" for Frobenius and Verschiebung. -/
lemma verschiebung_mul_frobenius (x y : W R) :

verschiebung (x * frobenius y) = verschiebung x * y :=
by { ghost_calc x y, rintro 〈〉; ghost_simp [mul_assoc] }

9 11



Identity proofs, automated

/-- The "projection formula" for Frobenius and Verschiebung. -/
lemma verschiebung_mul_frobenius (x y : W R) :

verschiebung (x * frobenius y) = verschiebung x * y :=
by { ghost_calc x y, rintro 〈〉; ghost_simp [mul_assoc] }

↑

p : N
_inst_1 : fact (nat.prime p)
R : Type u_1
_inst_2 : comm_ring R
x y : witt_vector p R
` ⇑verschiebung (x * ⇑frobenius y) = ⇑verschiebung x * y

9 11



Identity proofs, automated

/-- The "projection formula" for Frobenius and Verschiebung. -/
lemma verschiebung_mul_frobenius (x y : W R) :

verschiebung (x * frobenius y) = verschiebung x * y :=
by { ghost_calc x y, rintro 〈〉; ghost_simp [mul_assoc] }

↑

p : N
_inst_1 : fact (nat.prime p)
R : Type u_1
R._inst : comm_ring R
x y : witt_vector p R
` ∀ (n : N), ⇑(ghost_component n) ⇑(verschiebung (x * ⇑frobenius y)) =

⇑(ghost_component n) ⇑(verschiebung x * y)

9 11



It works!

The ring of Witt vectors overZ/pZ is isomorphic to the ring of p-adic integers:

def equiv : W (zmod p) '+* Z_[p] := . . .

10 11



Concluding thoughts

We can formalize mathematically mature topics with the right idioms.

∼ 3500 LOC specifically on Witt vectors corresponds to 7 dense pages of Hazewinkel.

A little metaprogramming goes a long way.

11 / 11


