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Abstract

Semilinear maps are a generalization of linear maps between vector spaces where we allow
the scalar action to be twisted by a ring homomorphism such as complex conjugation. In
particular, this generalization unifies the concepts of linear and conjugate-linear maps. We
implement this generalization in Lean’s mathlib library, along with a number of impor-
tant results in functional analysis which previously were impossible to formalize properly.
Specifically, we prove the Fréchet—Riesz representation theorem and the spectral theorem
for compact self-adjoint operators generically over real and complex Hilbert spaces, addi-
tionally developing the Fourier theory needed to state and prove Parseval’s identity. We also
show that semilinear maps have applications beyond functional analysis by formalizing the
one-dimensional case of a theorem of Dieudonné and Manin that classifies the isocrystals
over an algebraically closed field with positive characteristic.

Keywords Functional analysis - Lean - Linear algebra - Semilinear - Hilbert space

1 Introduction

Proof assistant users have long recognized the value of abstraction. Working at high levels of
generality and specializing only when needed can save significant effort in both the long and
short term. In program verification, this principle manifests in the use of stepwise refinement
of programs from abstract specifications to executable code [22, 34]. Mathematical gener-
alizations that are rarely used in informal presentations are much more common in formal
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libraries, including the use of filters to generalize limits in topology and analysis [20] and
uniform spaces as a generalization of metric spaces and topological groups [2, 8, 10].

‘We propose another such mathematical generalization: linear maps, afundamental concept
in many fields of mathematics, can be seen as a special case of semilinear maps. A linear
algebra library built on top of this more general structure can unify concepts that would
otherwise be defined separately. In particular, linear and conjugate-linear (or antilinear)
maps are both examples of semilinear maps. By relating these, one can avoid a large amount
of code duplication and state many theorems more naturally. This generalization is rarely
seen explicitly in informal mathematics. Texts tend to focus on the linear case, claiming
results about the conjugate-linear or semilinear cases “by analogy” when needed.

Motivated by the desire to formalize theorems from functional analysis at the proper level
of abstraction, we have implemented this generalization in mathlib [32], a library of formal
mathematics in the Lean proof assistant [27]. When we started this project, much of mathlib
was already built on top of standard linear maps. With care and clever notation we were able
to make the transition largely invisible. With the generalization complete we were able to
state and prove a number of theorems far more elegantly than could have been done before.

Among the results unlocked by this refactor are the Fréchet—Riesz representation theorem,
which states that a Hilbert space is either isomorphic or conjugate-isomorphic to its dual
space; the generic definition of the adjoint operator on an inner product space over R or C;
and the spectral theorem for compact self-adjoint operators on Hilbert spaces, which gives
a canonical form for an important class of linear maps by reference to their eigenvectors.
This material in turn lays the groundwork for the formalization of vast areas of mathematics:
complex Hilbert spaces are the bread and butter of quantum mechanics and are therefore a
prerequisite for quantum information theory and a large part of mathematical physics.

Separately from the theory of semilinear maps, one of the key ingredients for the proof
of the spectral theorem was a structure theory of Hilbert spaces, notably including Hilbert
bases. As a second application of this material, we have given an efficient development of
the theory of complex Fourier series on the circle, culminating in Parseval’s identity.

Finally, as evidence that semilinear maps are useful for more than unifying real and
complex vector spaces, we have also formalized the one-dimensional case of a theorem of
Dieudonné and Manin [26] that classifies the isocrystals over an algebraically closed field of
characteristic p > 0. This is a foundational result in p-adic Hodge theory.

Related literature documents the struggles in other libraries to unify real and complex
linear algebra. For instance, Aransay and Divasén [5], working in Isabelle, write:

We miss ...the definition of a “common place” or generic structure representing inner
product spaces over real and complex numbers ...that could permit a definition and
formalisation of the Gram-Schmidt process for both structures simultaneously.

Their work introduces a “local” solution to the issue, but we argue that basing a library on
semilinear maps is the “global” solution. We discuss related work in more detail in Sect. 11.

We roughly estimate that over the course of this project we have added 17k lines of code
to mathlib, with 1k more lines waiting to be merged. We provide links to our contributions,
indicating where they can be found in the library, on the project website.!

This paper is an expanded version of an earlier conference publication [16]. Section 7.2
describes the theory of Hilbert bases, which we developed concurrently with the Hilbert
sum construction (Sect. 7.1) described in the original article which was used for the spectral
theorem. Section 9, the application to Fourier series, is new. A paragraph at the end of Sect.

1 https://robertylewis.com/semilinear-paper.
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10 describes some additions to the Witt vector development written shortly after the original
submission.

This paper describes work in Lean 3, the latest version at the time of submission. All of
mathlib, including the contributions described here, has now been ported to Lean 4.

2 Mathematical Preliminaries

2.1 Semilinear Maps

Given modules M1, M, over semirings R, Ry and a semiring homomorphismo : Rj — R»,
a o-semilinear map from M1 to M> is a function f : M — M, satisfying the two axioms

1. forallx,y e My, f(x +y) = f(x)+ f(y)
2. forallx € My and c € Ry, f(cx) =0o(c)f(x).

Let us note the two canonical examples:

e For R = R, = R and o the identity ring homomorphism idg : R — R, the second
condition simplifies to f(cx) = cf (x), and therefore an id g-semilinear map is precisely
an R-linear map in the classic sense.

e For R = Ry = C and o the complex-conjugation operation conj : C — C, the second
condition simplifies to f(cx) = ¢ f(x). Therefore a conj-semilinear map is a conjugate-
linear map between complex vector spaces.

The theory of semilinear maps develops along the same lines as the theory of linear maps,
with minimal adjustment. The composition of a o-semilinear map and a r-semilinear map,
foroc : R - Ryand t : Rp — R3,is a (t o o)-semilinear map. (For example, the
composition of two conjugate-linear maps is a linear map.) If o is bijective, the inverse of a
bijective o-semilinear map is a o ~!-semilinear map.

Theorems about special classes of linear maps also admit semilinear analogues. Consider,
for example, the theorem that a K-linear map f : E; — E, for K a normed field and E,
E> normed spaces over K, is continuous if and only if it is bounded (|| f (x)|| < M| x| for
some fixed M, for all x). This theorem generalizes to o -semilinear maps, for o : K; — Kj,
if the ring homomorphism o is an isometry.

2.2 Conjugate-Linear Maps in Functional Analysis

An inner product space is a vector space E over a scalar field K € {R, C} equipped with an
inner product (-, -), namely a K-valued function of two arguments which is conjugate-linear
in the first argument and linear in the second argument and which has symmetry and positivity
properties:

1. forallu,v,w € E, (u + v, w) = (u, w) + (v, w) and (w, u + v) = (w, u) + (w, v);

2. forallc e Kand v, w € E, (cv, w) = ¢(v, w) and (v, cw) = c(v, w);

3. forallv,w € E, (v, w) = (w, v);

4. forall v € E, the quantity (v, v) (which by (3) is real) is nonnegative, and strictly positive
unless v = 0.

For the case of real scalars, K = R, we consider the conjugation operation as being the
identity; this allows a development of the complex case to subsume the simpler real case.
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An inner product space has an associated norm ||v|| = 4/(v, v) and hence a metric struc-
ture. A Hilbert space is an inner product space for which this metric is complete. This
condition is automatic in finite dimension.

The dual of an inner product space E is the K-vector space of continuous linear maps
¢ : E — K. There is a natural conjugate-linear map from E to its dual E*: the vector v € E
is mapped to the vector (v, -) in E*. To see the conjugate-linearity of this map, observe that
{cv, -) = ¢({v, -). It is not difficult to see that, for an appropriate norm on E*, this map is an
isometry. A more subtle theorem, the Fréchet—Riesz representation theorem, asserts that
for a Hilbert space E this conjugate-linear map is bijective.

Given Hilbert spaces E, F over K and a continuous linear map 7 : E — F, it can be
proved that there is a unique continuous linear map T* : F — E, the adjoint of T, such that
forallv € E and w € F, (Tv, w) = (v, T*w). It turns out that the operation of sending
T : E — F toitsadjoint T* : F — E is a conjugate-linear map from £ — F to F — E.
To see the conjugate-linearity in this case, observe that

(v, (cT)Y*w) = {((cT)v, w) =¢(Tv, w) = (v, T*w) = (v, €THw).

Like the conjugate-linear map appearing in the Fréchet—Riesz representation theorem, the
adjoint map T +— T* turns out to be bijective and (for an appropriate norm) isometric.

Several important classes of continuous linear maps are defined using the adjoint. A
continuous linearmap T : E — E isself-adjoint,if T* = T,anditisnormal,if T*T = TT*.
Self-adjoint implies normal.

2.3 Hilbert Sums and Hilbert Bases

The Hilbert sum @; ., E; of a family of inner product spaces (E;);¢, is an inner product space
whose elements are choices (v;);¢, of an element from each E;, such that the collection of
chosen elements is square-summable in the sense that . [lv; I> < oo. Elements in the
Hilbert sum @;, E; can be added and scalar-multiplied in the obvious way. The inner
product on the Hilbert sum is given by ((v;)ic., (Wi)ie) = Y_;¢,(Vi, wi). It can be proved
that if each E; is a Hilbert space (i.e., complete) then so is ;. E;. A linear map T :
DB, Ei = D, Ei is diagonal if there exist scalars (u;)ie, such that for all (v;)ie, €
DBic Ei. T (Vi) = (Uivi)ier-

The Hilbert sum €D, K of ¢ copies of the trivial inner product space K is denoted
22(1, K). A Hilbert basis for an inner product space E, with the index set ¢, is a bijective
linear isometry r from E to Ez(t, K). This is identified, in informal mathematics, with the
collection (v;);je, = (r~'(e;))ie, of vectors in the Hilbert space E which are the preimages
of the elementary vectors in 2, K)

1, j=i

ei(j) = 0. j£i°

Such a collection (v;);¢, of vectors in E is a Hilbert basis if its elements are mutually-
orthogonal and their span in E is dense. Thus the notion generalizes the finite-dimensional
notion of an orthonormal basis. An argument via Zorn’s lemma proves that a Hilbert space
admits an orthonormal basis.
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The bijective linear isometry 7 : E — £%(¢, K) is uniquely determined from the associated
family of vectors (v;)ie, as follows: for w an element of E, the element r(w) of 21, K)
satisfies,

rw)(j) = (vj, w). ()]

Since this map is an isometry,

lwi® = lIr@) > =Y v, w)l*. @)

1=
2.4 The Spectral Theorem

A linear map T : E — F between normed spaces is compact if the image under T of the
unit ball in E is precompact (that is, has compact closure) in F. This condition implies the
continuity of T but is more restrictive. The spectral theorem states that a normal (over C) or
self-adjoint (over R or C), compact linear map T : E — E is equivalent to a diagonal map,
in the sense that there exists a bijective linear isometry ® from E to a Hilbert sum €, , Fi,
such that the linear map ® o T o ®~! is diagonal. In fact, the F; may be chosen to be the
eigenspaces of T', with the w; chosen to be the associated eigenvalues.

In finite dimension, every linear map is compact. In this setting the spectral theorem
reduces to the more elementary diagonalization theorem for a normal endomorphism 7' of
a finite-dimensional inner product space E': there exists a bijective linear isometry ® from E
to a finite direct sum of finite-dimensional inner product spaces (F;);¢,, such that the linear
map ® o T o ! is diagonal.

2.5 Fourier Series and Parseval’s Identity

A concrete example of a complex Hilbert space is LZ(S!, C), the square-integrable functions
on the circle S' := {z € C : |z| = 1}, identified up to agreement almost everywhere. The
inner product of elements £, g : S! — C in this Hilbert space is by definition

(f.g) = / . f(@g(@)dur(2),

for p the unit-measure Haar measure on the circle.

The “monomial” functions F, : 1 — C defined by F,,(z) = 7" forn € Z are orthonormal
in L2 ( st C), a straightforward computation, and dense in LZ(S 1 C), a subtle fact which can
be proved by invoking the Stone-Weierstrass theorem and the denseness of continuous func-
tions in L”. Therefore the functions (F,),cz form a Z-indexed Hilbert basis for L2(S!, C),
and define an isometry from L2(S!, C) to £2(Z, C).

The Fourier coefficients ( fn> ’ of a function f € L*(S',C) are by definition the
ne

Z-indexed family of complex numbers constituting the element of ¢2(Z, C) to which f is
mapped under this isometry. Unfolding the definition of the inner product in this Hilbert
space, we have by (1) that

fo= / 7" f()du(z),
zeS!
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and by (2) that

| 1r@Rdu@ = 171 = L1 P
ze

nez

This theorem is known as Parseval’s identity.

2.6 Frobenius-Semilinear Maps

Given a commutative ring R and a prime p, there is a classical construction [19] of an
associated commutative ring W(R), the ring of p-typical Witt vectors of R. The elements of
this ring are sequences of elements of R, but the definitions of addition and multiplication
are rather elaborate. The motivating example is that for R the finite field Z/pZ, the ring
W(Z/ pZ) is the ring of p-adic integers.

The ring W(R) admits a canonical ring-endomorphism, the Frobenius endomorphism.
Concretely, when R has characteristic p, it operates by sending a sequence (xo, x1, X2, . ..)
to (xg , x]p , xé’ , .. .). In the example of the p-adic integers W(Z/ p’Z), this endomorphism is
the identity, so the construction becomes interesting only for more complicated rings R, such
as field extensions of Z/ pZ.

For R an integral domain of characteristic p, the ring W(R) is also an integral domain, and
therefore has a well-defined field of fractions. In this case, the Frobenius endomorphism of
W(R) extends to an endomorphism of its field of fractions. If moreover the ring R is perfect,
then the Frobenius endomorphism is an automorphism (that is, bijective), as is the induced
automorphism of its field of fractions.

Let us fix an algebraically closed field R of characteristic p (which is necessarily a perfect
integral domain), and denote by K the field of fractions of W(R) and by ¢ : K — K the
Frobenius automorphism of K. There is a very well-developed theory of ¢-semilinear maps
between vector spaces over K. Notably, an important theorem of Dieudonné and Manin
[26] provides an analogue of the spectral theorem. For a finite-dimensional vector space V
over K , it classifies the isocrystals (bijective ¢-semilinear maps f : V — V), by constructing
for such an f a decomposition of V as a direct sum of vector spaces V; which are preserved
by f and on each of which the map f has a certain canonical form.

In the one-dimensional case this classification can be stated in a fairly elementary way.
Let f : K — K be a ¢-semilinear automorphism of K, considered as a vector space over
itself. Then there exists an invertible element a of K and an integer m € Z, such that for all

veKk, fv) = p"ap(av).

3 Lean Preliminaries

The mathlib library builds its algebraic hierarchy using type classes [31, 32]. Baanen [6]
gives an in depth account of mathlib’s use of type classes, which we summarize very briefly.
Each argument to a Lean declaration is declared as explicit ( () ), implicit ({ }), or instance-
implicit ([1). Explicit arguments must be provided when the declaration is applied; implicit
arguments are inferred by unification; instance-implicit arguments are inferred by type class
instance resolution.
The fundamental type class of mathlib’s linear algebra library is module.

class module (R : Type u) (M : Type v) [semiring R]
[add_comm_monoid M] extends distrib_mul_action R M :=

@ Springer



Formalized Functional Analysis... Page70f26 10

(add_smul : V (r s : R) (x : M), (r + s8) X =1r - X + S - X)
(zero_smul : V (x : M), (0 : R) - x = 0)

This type class says that the additive monoid M has an R-module structure: it supports scalar
multiplication by elements of the semiring R, and this scalar multiplication behaves properly
with respect to addition on M. When R is a field instead of a semiring, an R-module is in fact
a vector space. Many definitions and theorems apply in the more general setting, and when
the vector space setting is needed, the transition is invisible.

A type class is a structure (i.e. a record type) that takes zero or more parameters and has
zero or more fields. In the above, the arguments R and M are parameters, as are the arguments
that R is a semiring and M is an additive commutative monoid. In order to elaborate the type
module R M, Lean’stype classinference algorithm must be able to infer the latter arguments
automatically. The fields of module are add_smul and zero_smul, and a projection to
distrib_mul_action R M. To construct a term of type module R M, the user must
provide these values; given aterm of typemodule R M, the user can access these values. The
extends keyword can be read as “inherits from.” Anassumptiondistrib_mul_action
R Mis available while defining the fields add_smul and zero_smul, and indeed, the scalar
action used in these fields is derived from this instance.

By default the parameters to a type class are input parameters. Lean will begin its instance
search when all input parameters are known. By denoting certain parameters as output param-
eters, the user can instruct Lean to begin searching for instances of that class before those
parameters are known; they will be determined by the solution to the search. Baanen [6, Sect.
5.1] describes output parameters in more detail.

Like mathlib, we freely use classical logic and do not focus on defining things computably.
Within code blocks in this paper, we omit the bodies of definitions and theorems when only
the type is relevant, omit some implicit arguments when the types are clear from context, and
occasionally rename declarations for the sake of presentation.

4 Semilinear Maps in Lean

Section 2 covered the mathematical motivation for semilinear maps. Here we focus on our
implementation of this generalization in Lean. This work is done in the context of mathlib
[32], a project with over 1.4 million lines of code, over 300 contributors, and countless
users. Given the difficulty and importance of maintaining such a large library [15], we were
motivated to make this refactor with as little disruption as possible.

4.1 Defining Semilinear Maps

Before beginning our refactor to use semilinear maps, mathlib’s linear algebra development
was based on the more familiar concept of linear maps.

structure linear_map (R : Type u) (M; : Type v) (Mp : Type w)
[semiring R] [add_comm_monoid Mj] [add_comm_monoid Mp] [module R Mj]
[module R Mp] extends add_hom M; My, mul_action_hom R Mj Mp

Given two R-modules M1 and M2, a linear map is an additive homomorphism M; —
M, that respects the multiplicative action of R. A mul_action_hom is a homomorphism
between types acted on by the same type of scalars [33].

@ Springer
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For readers unfamiliar with Lean syntax, it may be clarifying to see what information
goes in to defining such a linear map. Despite the intimidating syntax, the input information
is exactly as expected: if you have types R, M; , and M, with the appropriate operations and
structure, you can construct a linear map by providing a function M; — M, and proofs that
this function factors through addition and scalar multiplication. In the code below, underscores
_ represent placeholders, and subsequent comments (beginning --) note the types of these
placeholders.

example (R : Type u) (M : Type v) (Mp : Type w)
[semiring R] [add_comm_monoid Mj] [add_comm_monoid Mp] [module R Mj]
[module R Mp] : linear_map R Mj Mp :=

{ to_fun := _, -—- M} — I
map_add := _, -V (x y : M), to_fun (x + y) = to_fun x + to_fun y
map_smul’ := _ } -—-V (m : R) (x : M), to_fun (m - x) = m - to_fun x

As noted in Sect. 2, the domain and codomain of a linear map are modules over the same
semiring. The same is true in the definition of linear equivalences:

structure linear_equiv (R : Type u) (M] : Type v) (Mpy : Type w)
[semiring R] [add_comm_monoid M;] [add_comm_monoid Mp] [module R Mjp]
[module R Mp] extends linear_map R M| My, add_equiv M} Mp

The type signature of a semilinear map? is more complicated, involving two scalar
semirings and a ring homomorphism between them. It no longer makes sense to extend
mul_action_hom, since the multiplicative actions are over different scalar types, so we
instead add the field map_smul directly. The arguments R and S can be inferred from o and
are thus marked as implicit. The type R —+* S is the type of ring homomorphisms from
Rto S.

structure semilinear_map {R : Type*} {S : Type*} [semiring R]

[semiring S] (o0 : R —+* 8) (M} : Type*) (Mp : Type*)
[add_comm_monoid M;] [add_comm _monoid Mp] [module R Mj] [module S Mp]
extends add_hom M| Mp :=

(map_smul’ :V (r : R) (x : M), to_fun (r - x) = (0 r) - to_fun x)

While the type signature has grown more complicated, the constructor for a semilinear
map is quite similar to that of a linear map:

example {R : Type*} {S : Type*} [semiring R] [semiring S]

(0 : R —+%* 8) (M] : Type*) (Mp : Type*) [add_comm_monoid Mj]
[add_comm_monoid Mp] [module R M;] [module S Mp]
semilinear_map o M; Mp :=
{ to_fun := _, -- M} — M
map_add’ := _, --V (xy : M), to_fun (x + y) = to_fun x + to_fun y
map_smul’ := _ }
--V (r : R) (x : M), to_fun (r - x) =0 r - to_fun x

2 In our mathlib contribution we did not rename the type 1inear_map to semilinear_map. This simplified
the refactor and makes the definition easier to find for beginners. For the sake of clarity in this paper, we refer
to the generalized type by the more accurate name.
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The generalization to semilinear equivalences is similar, but more involved in order
to gracefully handle inversion of such maps. The additional parameter ¢’ and the
ring_hom_inv_pair type class are explained in Sect. 4.3.

structure semilinear_equiv {R : Type*} {S : Type®™} [semiring R]
[semiring S] (6 : R —+* 8) {06/ : S —+* R} [ring_hom inv_pair o ¢']
[ring_hom_inv_pair ¢’ ol (M} : Type*) (Mp : Type*)

[add_comm_monoid M;] [add_comm_monoid Mp] [module R Mj] [module S Mp]
extends semilinear_map o M; My, add_equiv M| Mp

4.2 Notation for Semilinear Maps

One can see from these definitions that semilinear maps are not a drop-in replacement for
linear maps. The type signature is different, even when looking only at explicit arguments.
To convert an R-linear map to a semilinear map, one must know to invoke ring_hom.id R,
the identity ring homomorphism on R.

Given how frequently linear maps appear in mathlib, this refactor threatened to be painful.
Our job was made immensely easier by the use of notation. Before our refactor mathlib
used the notation M; —;[R] M, to stand for for l1inear_map R M; M . By redefining
this notation to stand for semilinear map (ring_hom.id R) M; M, we were largely
able to avoid breaking definitions and proofs throughout the library. The same approach, with
notationM; ~~; [R] M;,worked to generalize linear equivalences to semilinear equivalences.
We introduced similar notationM; —; [0] M tostand for semilinear_map o M; M,
andM; —x[R] M, to stand for a semilinear map with respect to a fixed involution such as
complex conjugation.

The composition of linear maps proved to be a complication. As we note in Sect. 4.3, an
additional type class must be inferred to justify that two semilinear maps can be composed.
This inference was fragile in the presence of other features, like implicit coercions, that
complicate elaboration. We introduced notation o; for the composition of linear maps, using
ring_hom. id to justify the composition, and manually inserted this notation where needed.

For our new definition to be useful, theorems stated for linear maps M; —;[R] M
needed to be upgraded to theorems about semilinear maps M; —; [0] M when possible.
Doing so is mostly mechanical and our use of notation let us approach this without hurry.
Because theorems generalized to semilinear maps still apply directly to the linear case we
were able to do this generalization incrementally from the bottom up. In particular, several
more specialized classes of linear maps and equivalences are also present in mathlib (Fig. 1).
Our bottom-up approach allowed us to break down the refactor into more manageable pieces
by generalizing these one at a time.

4.3 Composition of Semilinear Maps

Composition of maps is complicated by this generalization. The composition of two linear
maps is straightforward: it is easy to check that the composition of the underlying func-
tions preserves addition and scalar multiplication. With semilinear maps one must also
compose the homomorphisms between scalar rings. Given £ : M} —g[o2] My and
g : My —g[o23] M3, wewouldnaturallyendupwithg.comp £ : M; —; [023.comp
o12] M.
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Linear Conjugate-linear | Semilinear Meaning
Map M; —;[R] Mo M; —;*[R] Ms M1 —g[o] Mg Between mod-
ules; factors
over addition
and scalar
multiplication
Continuous | M; —L[R] My | My —Lx[R] Mo M1 —SL[o] M2 | Between
map topological
modules; a
continuous
map
Equivalence | M; ~;[R] Mg M1 ~;*[R] Mo M1 ~g;[o] Mg An invertible
map
Isometry M; ~;;[R] My | My ~;;«[R] Ms M1 ~s;ilo] My | Between
normed
modules;

a norm-
preserving
equivalence

Fig. 1 Notation for various classes of (semi)linear operators that appear in this paper

This ends up being awkward to handle in many common situations. Suppose we wish
to state that £ : M; —[o2] M and g : My —g[021] M| are inverse maps:
f.comp g = (id : M; —;[R] M) . This statement is not type-correct, since the ring
homomorphism on the leftis 12 . comp 07 and the one on the right is the identity. Such an
issue appears in practice, for example, when defining the adjoint as a conjugate-linear map
(Sect. 6).

To solve this issue, we introduce a type class ring_hom_comp_triple that states that
two ring homomorphisms compose to a third.

class ring_hom_comp_triple [semiring Rj] [semiring Rp] [semiring R3]
(012 : Rl —+* Ry) (023 : Ry —+" R3) (013 : out_param (R; —+* R3))
Prop :=

(comp_eq : o0p3.comp 012 = 013)

We register a number of global instances of this class. We then use the ring_hom_comp_
triple type class in the definition of composition.

def semilinear map.comp {R; Rp R3 : Type*} {M] Mp M3 : Type*}
[semiring Ry] [semiring Rp] [semiring R3]
[add_comm_monoid M;] [add_comm_monoid Mp] [add_comm_monoid M3]
{mod_M; : module Ry Mj} {mod_Mp : module Rp Mp}
{mod_M3z : module R3 M3z}
{012 : Rl —+" Ry} {023 : Rp —+" R3} {013 : R —+* R3}
[ring hom_comp_triple o1 023 013]
(g : My —4[023] M3) (£ : M| —glo2] Mp)
(M} —g7lo13] M3)

While this may appear to be a rather verbose type signature for the composition

of maps, it allows us to avoid the above problem without introducing further compli-
cations. In common situations, the appropriate global instances generate the necessary
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ring_hom_comp_triple argument without input from the user. For example, the fol-
lowing global instance allows for the composition of two (genuine) linear maps, or more
generally for the composition of a semilinear map with a linear map.

instance [semiring Ry] [semiring Rp] {012 : R —+* Rp}
ring_hom_comp_triple (ring_hom.id Ry) o012 012

Another instance helps in the setting of conjugate-linear maps.’

instance [comm_semiring R] [star_ring R]
ring_hom_comp_triple (conj R) (conj R) (ring_hom.id R)

We expand on the types here in Sect. 5.1; in concrete terms, this instance says that the
conjugation operation on a type supporting conjugation is an involution. This allows us to
compose two conjugate-linear maps to obtain, definitionally, a linear map. The intention is that
users should never work directly with a composition g.comp £ : M; — [023.comp
o012] M3z , but instead with g.comp £ : M; —[013] M3 for some o3 satisfying
ring_hom_comp_triple o2 023 013, which is strictly more general.

Similar issues appear with semilinear equivalences, specifically when defining the
symmetric equivalence: if e : E ~;[c] F , the “natural” definition of the symmetric
equivalence would give e.symm : F ~[o.symm] E . Some ring homomorphisms,
notably conjugation on C, have the property that o . symm = o . But these equalities are
rarely definitional and spurious symms can block type checking. Introducing a new type class
ring_hom_inv_pair that states that two ring homomorphisms are inverses of each other,
analogous to the type class ring_hom_comp_triple described above, again solves this
issue.

class ring_hom_inv_pair [semiring Rj] [semiring Rp] (o : Ry —+* Rp)
(t : out_param (Rp —+* Ry)) : Prop :=

(comp_eq : t.comp ¢ = ring hom.id Rjp)

(comp_eqy : o.comp T = ring hom.id Rp)

Now, with a suitable instance stating that the conjugation operation on a type supporting
conjugation is its own inverse, we can work with a conjugate-linear equivalence e : E =~
*[R] F,ie. e : E ~g[conj] F, over scalars of that type, and have that its inverse
e.symm be genuinely of type F ~x[R] E.

instance [comm_semiring R] [star_ring R]
ring_hom_inv_pair (conj R) (conj R)

5 Fréchet-Riesz Representation Theorem

In the following three sections we describe results that we were able to formalize at the proper
level of generality thanks to our refactor. By the “proper level” of generality, we mean that
our results hold generically over the real and complex numbers without case splits or separate
declarations.

3 In fact, we do not state this instance explicitly; it is derived by type class inference from the
ring_hom_inv_pair instance for conj (see below) and yet another global instance generating a
ring_hom_comp_triple with the identity from a ring_hom_inv_pair.
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local notation ‘K' := algebra_map R _

class is_R_or_C (K : Type”) extends nondiscrete_normed_field K,
star_ring K, normed_algebra R K, complete_space K :=
(re : X -+ R)
(im : K -+ R)
(I : K)
(I_re_ax : re I = 0)
(Imul I ax : I=0vI~*I-=-1)
(re_add_im_ax : V (z : K), K (rez) + K (imz) " I = 2)
(of_real_re_ax : V r : R, re (K r) r)
(of_real_im_ax : V r : R, im (K r) 0)
(mul_re_ax : Vzw:K, re (z " w) =rez “rew-imz ¥ im w)
(mul_im_ax : Vzw : K, im (z *w) =rez “imw + im z * re w)
(conj_re_ax : V z : K, re (conj z) = re z)
(conj_im_ax : V z : K, im (conj z) = -(im z))
(conj_I_ax : conj I = -I)
(norm_sq_eq_def_ax :
V(z: K, |z][2=(ez) " (re z) + (im z) * (im z))
(mul_im_I_ax : V (z : K), (im z) * im I = im z)
(inv_def_ax : V (z : K), z ' =conj z * K ((z[~27™')
(div_I_ax : V (z : K), z/ I=-(z " I))

Fig.2 Theis_R_or_Ctypeclassis satisfied only by fields isomorphic toR or C. The star_ringassumption
endows K with an involutive operator conj that respects addition and multiplication.

5.1 Theis_R_or_cCType Class

Many results in functional analysis, including those presented here, hold for a field K €
{R, C}. Such results are usually presented in the literature by giving proofs for the complex
case, with the real case following in the obvious way: replace complex conjugation by the
identity, i by zero, and so on.

Before beginning our refactor, we introduced a type class is_R_or_C to mathlib used to
formalize this kind of result. A type that instantiates is_R_or_C is a complete nondiscrete
field with (real) norm containing an element i and functions conj, re and im that satisfy
a number of ad-hoc axioms chosen to mimic the behavior of a field that is either R or C.
The conj operator is an involutive ring homomorphism, enabling the notation discussed in
Sect. 4.3. Two global instances stating is_R_or_C R andis_R_or_C C allow theorems
over the generic type class to be specialized immediately to either concrete type. The conju-
gation operator conj is definitionally equal to the identity function in the real case and the
complex conjugation function in the complex case. We note an experiment with a similar
type class in Isabelle [5].

Working over an is_R_or_C field enables many nice features. In particular, the con-
jugation operator conj is definitionally equal to the identity function in the real case and
the complex conjugate in the complex case. Hilbert spaces in mathlib are defined over
is_R_or_C fields. Given two Hilbert spaces E and F over a field X, conjugate-linear maps
E ~x[K] F are precisely maps which are semilinear with respect to conj, and thus in
the real case are linear maps by definition. Within mathlib, this type class has already been
used extensively beyond the results mentioned in this paper, notably by Sébastien Gouézel
for stating in correct generality the Hahn—Banach theorem, the smooth case of the inverse
function theorem, and more.
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5.2 Fréchet-Riesz Representation Theorem

Our first application of semilinear maps is in proving the Fréchet—Riesz representation the-
orem. While the real case has been formalized in Coq [7] and Mizar [28], and the complex
case in Isabelle [11], we are not aware of a development that unifies the two.*

Given a Hilbert space E, its dual space E* consists of the set of continuous linear func-
tionalson E (i.e. E* = {f : E — K| f is linear and continuous}). The dual space certainly
includes elements of the form f, that map w € E to (v, w), and the Fréchet-Riesz represen-
tation theorem states that all elements of the dual space are of this form. That is, there exists
an (in fact, isometric) equivalence between E and E™* that maps v to to f;.

The difficulty in formalizing this is that while this equivalence is linear in the real case,
in the complex case, it is conjugate-linear. The challenge is to construct this object in such
a way that (1) there is a common definition for both the real and complex case, and (2) the
added complication of conjugate-linearity is completely transparent in the real case. Before
our refactor mathlib simply had two separate constructions. We are able to replace those two
constructions with the following, which satisfies both requirements stated above:
def to_dual (K E : Type*) [is_R_or_C K] [normed_add_comm_group E]

[inner_product_space K E] [complete_space E]
E ~;i*[K] normed_space.dual K E

lemma to_dual_apply [is_R_or_C K] [inner_product_space K E]
[complete_space E] {x y : E} : to_dual K E x vy = (x, v)

Read aloud this definition says that “a real or complex Hilbert space E is isometrically
conjugate-isomorphic to its dual space.” But when specialized to the real case, the statement
is definitionally equal to “E is isometrically isomorphic to its dual space.”

Our proof of this theorem does not differ from the real version of the proof in mathlib
prior to our refactor. In fact, the patch unifying the real and complex versions® added only
45 lines of code and removed 79; the only change beyond rearranging and documentation
was to generalize the statement of the theorem. The Lean implementation of the orthogonal
projection on real inner product spaces, a tool used in the proof, had been written by Zhouhang
Zhou as a port of work in Coq by Boldo et al. [7].

6 Adjoints of Operators on Hilbert Spaces

Given a continuous linear map A between two Hilbert spaces E and F, the adjoint of A is the
unique continuous linear map A* : F — E suchthatforallx € Eandy € F, (y, Ax)f =
(A*y, x) g. The adjoint satisfies a number of properties: it is involutive (i.e. (A*)* = A), it
is an isometry, and, most importantly for our purposes here, it is conjugate-linear. Hence, it
was natural to bundle it in mathlib as a conjugate-linear isometric equivalence as follows:
def continuous_linear_map.adjoint [is_R_or_C K]

[inner_product_space K E] [inner_product_space K F]

[complete_space E] [complete_space F]
(E -L[K] F) ~;x[K] (F —-L[K] E)

4 This theorem should not be confused with the Riesz—Markov—Kakutani representation theorem, which has
been formalized in Mizar, PVS (unfortunately referred to as the “Riesz representation theorem”), and possibly
other proof assistants.

5 https://github.com/leanprover-community/mathlib/pull/9924.
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lemma continuous_linear_map.adjoint_inner_left [is_R_or_C K]
[inner_product_space K E] [inner_product_space K F]
[complete_space E] [complete_space F]

(A : E »>L[K] F) (x : E) (y : F)
{continuous_linear_map.adjoint A y, x) = (v, A x)

This definition fully exploits the algebraic formalism built for semilinear maps, including
the composition mechanism of Sect. 4.3. For example, the statement that the composition
of the adjoint operation with itself is equal to the identity map from E —L[K] F to
itself (a “true” K -linear map) would not typecheck without the ring_hom_comp_triple
mechanism.

In finite dimension, every linear map is a continuous linear map, so the adjoint
construction actually applies to every linear map. We provide this construction as
linear_map.adjoint for the benefit of future users interested only in the finite-
dimensional setting.

An operator T on a Hilbert space is said to be self-adjoint if T = T* and normal if
T*T = TT*. We allow these definitions to apply both to the finite-dimensional setting
with linear_map.adjoint and to the general setting with continuous_linear_
map.adjoint by in fact writing these definitions in the more general context of a
star_ring, aring equipped with a fixed involutive ring homomorphism.

def self_adjoint [ring R] [star_ring R] : add_subgroup R :=
{ carrier := {x | star x = x}, o)

def is_star_normal [ring R] [star_ring R] (x : R) :=

star x * x = x * star x

When Ris thering E —; [K] E of linear endomorphisms of a finite-dimensional inner
product space E (with ring operation composition), the involution star is 1inear_map.
adjoint. When R is the ring E —L[K] E of continuous linear endomorphisms of a
Hilbert space E, the involution star is continuous_linear_map.adjoint.

7 Structure Theory of Hilbert Spaces
7.1 The Dependent-£P Construction

The spectral theorem, in finite dimension also known as the diagonalization theorem,
expresses an operator on a Hilbert space in the canonical form of a “diagonal” operator.
To describe this canonical form, one needs some version of the Hilbert sum construction,
described in this section.

Before we started, mathlib already had a finitary version of this construction, namely a
type pi_Lp denoting the product of finitely many normed spaces:

def pi_Lp {t : Type u} (p : R) (G : ¢« —» Type v) : Type (max u v) :=
IT (i : 0, ¢ i

Note that the p parameter is not actually used in this definition. The parameter is used to
define a family of normed space structures on this type, and, in the case of p = 2, an inner
product space structure:
instance pi_Lp.inner_product_space {K : Type w} [is_R_or_C K]

{t : Type u} [fintype (] (G : t — Type V)

[IT (i : ), inner_product_space K (G i)]
inner_product_space K (pi_Lp 2 G)
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We require the general version of this construction, with a possibly-infinite index set ¢.
We first define a predicatemem_¢p £ p ondependent functionsin]] (i : ¢), G i and
extended nonnegative real numbers p, which, for p = 2, amounts to the norm-squared of
the function being a convergent sum. The associated subsetof [T (i : ¢), G i isnamed
1lp G p:
def 1p {t : Type u} (G : t — Type v) [[I (i : ), normed_group (G i)]

(p : R>000) : add_subgroup ([T (i : ), G i) :=
{ carrier := {f | mem {p f p}, )

In the case p = 2 this inner product space is known as the Hilbert sum of the family G.
For general p, in the special case of the trivial family A (i : ¢), K of normed spaces,
this construction gives what is traditionally called £7 (¢, K). We will refer to the general
construction 1p as the dependent-£P construction.

We prove 1p G p to be an additive subgroup, and for p = 2 equip it with an inner product
Space structure.

instance lp.inner_product_space {t : Type u} {K : Type w}
[is_R or_C K] {G : ¢t - Type v}
[IT (i : ), inner_product_space K (G i)]
inner_product_space K (1lp G 2)

This is a reasonably labor-intensive construction (some 500 lines of code), the difficulties
being a series of small analytic arguments about the convergence of the sums involved. It is
closely analogous to Rémy Degenne’s mathlib construction (see also related work in Isabelle
[17]) of the normed space structure on L” (X, G), a subtype of the type of equivalence classes
of measurable functions from a measure space X into a normed space G, which we also need
in this work (see Sect. 9.2). However, neither construction is a strict generalization of the
other: the L? construction allows for integrals with respect to an arbitrary measure rather
than just sums, whereas the dependent-£7 construction applies to dependent functions of type
[T (1 : ¢), G i inwhich the “codomain” varies depending on the argument. We in fact
need this dependent property for the spectral theorem.

A further analytic argument establishes the completeness of 1p. The key step here is an
argument that a pointwise limit of a uniformly-bounded sequence of elements of 1p is itself
in 1p. is A Hilbert space is by definition a complete inner product space and therefore this
establishes that the Hilbert sum 1p G 2 is a Hilbert space.

instance lp.complete_space {t : Type u} {G : ¢t — Type v}
[IT (i : ¢), normed_group (G i)] [V (i : (), complete_space (G i)]
{p : R>000} [fact (1 < p)] : complete_space (lp G p)

Finally, given a Hilbert space E of interest, an important argument establishes a mecha-
nism for “collating” a family of isometries from the summands G 1 into E to an isometric
isomorphism from 1p G 2 into E. It is sufficient (and necessary) that the images of the
family of isometries form a mutually-orthogonal family of subspaces of E, and that their
joint span be dense in E.

def orthogonal_family.linear_isometry_equiv [is_R_or_C K]
[inner_product_space K E] [complete_space E]

[IT (i : ), inner_product_space K (G i)]

(v.: Il (f : 1), Gi —;[K] E} (hV : orthogonal_family K V)

[V (1 : t), complete_space (G 1i)]

(hv' : (L) i, (v i).to_linear _map.range) .topological_closure = T)

E ~; K] (lp G 2)
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We also provide the finitary, i.e. pi_Lp, version of this construction.

def direct_sum.submodule_is_internal.isometry_L2_of_ ortho_family

[is_R_or_C K] [inner_product_space K E] [fintype (] [decidable_eq (]
{V : t - submodule K E} (hV : direct_sum.submodule_is_internal V)
(hv/ : orthogonal_family K (A (i : ¢), (V i) .subtypey;))

E >~ [K] pi_lp 2 (A (1 : ¢), V 1)

7.2 Hilbert Bases

The current definition of bases in mathlib, proposed by Reid Barton and Mario Carneiro and
implemented by Anne Baanen, dates back to 2021. Given a vector space E over R, a basis
for E is given by an isomorphism between E and finitely-supported functions from an index
type ¢ to R. This is implemented via the structure

structure basis (t R E : Type*) [semiring R] [add_comm_monoid E]
[module R E] :=
(repr : E > [R] (¢t —0 R))

Note that this looks somewhat different from the traditional definition as a set of linearly-
independent vectors that span the space.

Our treatment of Hilbert bases is analogous: rather than directly following the traditional
definition as an orthogonal set in a Hilbert space with a dense span, we instead choose to
define a Hilbert space version of repr in an appropriate way. More precisely, we replace the
isomorphism between E and finitely-supported functions from ¢ to R by a bijective linear
isometry between E and £2(1, K) (this is the traditional £2, i.e., the Hilbert sum of ¢ copies
of K, for which we locally introduce the notation ¢2 (¢, K) in mathlib). Moving to an
isometry allows us to preserve the inner product, and we include infinite sums by replacing
finitely-supported functions by square-summable functions from ¢ to K.

The result looks like the following. We define a Hilbert basis of a Hilbert space E to be
a structure whose single field hilbert_basis.repr is an isometric isomorphism of E
with €2 (¢, K) . This parallels the definition of “basis”, as an isomorphism of an R-module
with ¢ —0 R.
instance [is_R_or_C K] [inner_product_space K E]

has_coe_to_fun (hilbert_basis ¢t K E) (A _, ¢t - E) :=
{ coe := A b i, b.repr.symm (lp.single 2 i (1:K)) }

We can then recover the traditional interpretation as a family of vectors as an instance of
the function-coercion (has_coe_to_fun) typeclass:
lemma hilbert_basis.repr_apply apply [is_R_or_C K]

[inner_product_space K E] (b : hilbert_basis ¢t K E) (v : E)

(1 : ) :

b.repr v 1 = (b i, v)

This allows us to treat b : hilbert_basis ¢ K E as a function from ¢ to E, such
that b i corresponds to the i-th basis vector. These are orthogonal and have dense span.

We then get the following fundamental property of Hilbert bases:
lemma hilbert_basis.has_sum_repr [is_R_or_C K]

[inner_product_space K E] (b : hilbert_basis ¢t K E) (x : E)
has_sum (A i, b.repr x i - b 1) x

The main point of Hilbert bases is to be able to represent any vector in the space as an
infinite linear combination of vectors from the basis. Here is what this fact looks like in our
treatment of Hilbert bases:
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lemma hilbert_basis.has_sum_repr [is_R_or_C K]

[inner_product_space K E] (b : hilbert_basis ¢t K E) (x : E)

has_sum (A i, b.repr x i - b 1) x

To construct a Hilbert basis from a traditional representation as an orthonormal family of
vectors whose span is dense in the whole module, we can use the following definition:
def hilbert_basis.mk [is_R_or_C K] [inner_product_space K E]

[complete_space E] {v : t — E} (hv : orthonormal K wv)

(hsp : (span K (set.range v)).topological_closure = T)

hilbert_basis ¢t K E

Finally, we also proved the fact that every Hilbert space admits a Hilbert basis, which uses
Zorn’s lemma:
lemma exists_hilbert_basis (K E : Type®) [is_R_or_C K]

[inner_product_space K E] [complete_space E]

3 (w : set E) (b : hilbert_basis w K E), ffb = (coe : w — E)

Notice that paper versions of this statement often require separability of the Hilbert space,
since they additionally stipulate that a Hilbert basis must be countable. This is not the case
for us, and in the non-separable case, we simply get an uncountable index type ¢.

8 Versions of the Spectral Theorem
8.1 Common Outline of the Spectral Theorems

A diagonal operatoron 1p G 2 orpi_Lp 2 Gis an operator that, for some fixed sequence
of scalars u : ¢« — K, sends each dependent function £ : [ (i : ¢), G i to
the pointwise-rescaled function A i, u i - £ i . The spectral theorem for compact
self-adjoint (respectively, normal) operators states that such an operator over is_R_or_C
(respectively, C) is equivalent to a diagonal operator on 1p G 2, for some family of inner
product spaces G. The finite-dimensional special case, the diagonalization theorem, states
that a normal endomorphism of a finite-dimensional inner product space over C is equivalent
to a diagonal operator on some pi_Lp 2 G.

The key point of all such theorems, which we defer discussing to Sect. 8.2, is a proof
that every operator from the stated class has an eigenvalue (unless the operator is the trivial
operator on the trivial vector space). The proof of this important point is what differs from
theorem to theorem. In this subsection we discuss the common part of the proofs of the
theorems, namely the reduction to the existence of an eigenvalue.

This part is essentially algebraic and is carried out for an endomorphism of an inner
product space E that satisfies the following property, common to those three cases: I cut out
the list of cases, I thought it was a bit heavy.
def inner_product_space.is_normal (T : E —;[K] E) : Prop :=

I(T : E—>IKIE), T*T=1*"T AVxy, (x, v)=(x Ty)

We first show that the eigenspaces of such an operator are mutually orthogonal.

lemma orthogonal_family_eigenspaces [is_R_or_C K]

[inner_product_space K E] {T : E —;[K] E}

(hT : inner_product_space.is_normal T) :

orthogonal_family K (A (u : K), (eigenspace T pu).subtypey;)

This puts us in a position to apply the final construction from Sect. 7.1 to the
collection of eigenspaces of 7. Specifically, if the completeness property (|| (u
K), (eigenspace T u)).topological_closure = T or its finite-dimensional
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analogue can be established, then those results establish an isometric isomorphism between
E and the Hilbert sum of its own eigenspaces. It is easy to check that the operator 7', when
transferred by this isometric isomorphism to the Hilbert sum, is diagonal.

A further sequence of lemmas leads to this completeness property, and it is here that the
eigenvalue existence result is required. It is shown that an inner_product_space.is_
normal operator preserves orthogonal complements of eigenspaces.
lemma invariant_orthogonal_eigenspace [is_R_or_C K]

[inner_product_space K E] {T : E —;[K] E}

(hT : inner_product_space.is_normal T) (u : K) (v : E)

(hv : v € (eigenspace T u) L)
T v € (elgenspace T u) 1

Such an operator preserves the mutual orthogonal complement of all its eigenspaces.

lemma orthogonal_supr_eigenspaces [is_R_or_C K]
[inner_product_space K E] {T : E —;[K] E}
(hT : inner_product_space.is_normal T) (u : K)
eigenspace (T.restrict (orthogonal_supr_eigenspaces_invariant hT)) u =
1L
The restriction of such an operator to this mutual orthogonal complement, which is therefore
well-defined, itself has no eigenvalues.
lemma orthogonal_supr_eigenspaces [is_R_or_C K]
[inner_product_space K E] (T : E —;[K] E}
(hT : inner_product_space.is_normal T) (u : K)

eigenspace (T.restrict (orthogonal_supr_eigenspaces_invariant hT)) u =
L

From here, if the existence of an eigenvalue for all nontrivial operators in the class con-
sidered is known, by contraposition the subspace (| | (4 : K), eigenspace T u)t
(being the domain of the operator T.restrict (orthogonal_supr_ eigenspaces_
invariant hT), which has no eigenvalues) must be trivial. Standard Hilbert space theory
implies that the subspace | | (1 : K), eigenspace T u must be dense, the desired
completeness result.

8.2 Existence of an Eigenvalue

The first version of the spectral theorem we prove is for normal endomorphisms of a finite-
dimensional inner product space over C.

def diagonalization [inner_product_space C E] [finite_dimensional C E]
{T : E —>;[C] E} (hT : is_star_normal T)
E ~;[C] pi_Lp 2 (A u : eigenvalues T, eigenspace T u)

lemma diagonalization_apply_ self_apply [inner_product_space C E]

[finite_dimensional C E] (T : E —;[C] E} (hT : is_star _normal T)

(v : E) (u : elgenvalues T)

diagonalization hT (T v) m = (u : C) - (diagonalization hT) v u
We also provide the more classical version of this theorem, stating that there exists an
orthonormal basis of eigenvectors of T.

For this class of operators, the proof of the existence of an eigenvalue is straightforward.
In finite dimension, an endomorphism has a well-defined characteristic polynomial. Over an
algebraically closed field this polynomial must have a root, and this root is an eigenvalue.

The second version of the spectral theorem we prove is for self-adjoint compact operators
on a Hilbert space. Here a map between normed spaces is said to be compact, if the image
of every bounded subset has compact closure.
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def compact_map [nondiscrete_normed_field K] [normed_group E]
[normed_space K E] [normed_group F] (T : E — F) : Prop :=
V s : set E, metric.bounded s — is_compact (closure (T " s))

(Our theory of compact operators has has since been superseded by mathlib work of Anatole

Dedecker.) A compact linear map is automatically continuous, so it is no loss of generality to

take T to be of type E —L[K] E. In this setting we state the spectral theorem as follows.

def diagonalization’ [is_R_or_C K] [inner_product_space K E]
[complete_space E] {T : E —L[K] E}

(hT : T € self_adjoint (E —LI[K] E)) (hT_cpct : compact_map T)
E ~; [K] (lp (A p, eigenspace (T : E —;[K] E) u) 2)

lemma diagonalization_ apply self_apply’ [is_R_or_C K]
[inner_product_space K E] [complete_space E] {T : E —L[K] E}
(hT : T € self_adjoint (E —LI[K] E)) (hT_cpct : compact_map T)
(v : E) (n : K)
diagonalization’ hT hT_cpct (T v) u

= pn - diagonalization’ hT hT_cpct v u

For this class of operators, the proof of the existence of an eigenvalue comes from a long and
delicate calculation involving the Rayleigh quotient, some 700 lines of code. It is proved that
local maxima/minima of the Rayleigh quotient are eigenvectors, that the operator norm of T
is the supremum of the absolute value of the Rayleigh quotient, and (using the compactness
of T) that the Rayleigh quotient of T achieves its maximum.

Having established in this project the basic properties of compact operators, the infinite-
dimensional theorem of the spectral theorem for compact normal operators is also within
reach. There, the proof of the existence of an eigenvalue comes from an argument about
the resolvent, a holomorphic function with values in the Banach space E —;[C] E . The
current development of complex analysis in mathlib by Yury Kudryashov [21] is sufficiently
general for this setting. However, this would not supersede the spectral theorem we prove
for compact self-adjoint operators: the latter works generically over R and C, which is more
elegant than to deduce it in the real setting from the normal-operator version over C by
making an argument about the operator’s complexification.

9 Fourier Series and Parseval’s Identity
9.1 Continuous Functions are Dense in L?

This section describes a technical theorem in measure theory which is a preliminary for the
work on Fourier series in Sect. 9.2.

The theorem states that for a normal topological space « equipped with a weakly regular
Borel measure & and a real normed space E, and for 1 < p < oo, the bounded continuous
functions are dense in L? («, E). Note that for p = oo this result is not true: the characteristic
function of the interval [0, co) cannot be continuously approximated in L>°(R, R).

In Lean we state this theorem by introducing the additive subgroup Lp.bounded_
continuous_function of L”(a, E) consisting of equivalence classes containing a
bounded continuous representative, and stating that the topological closure of this subgroup
is equal to the “maximal” subgroup, FE itself.
lemma bounded_continuous_function_dense [measurable_space «o]

[topological_space «] [normal_space «a] [borel_space «]
[normed_group E] [second_countable_topology_either o E]
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[normed_space R E] {p : R>00c0} [fact (1 < p)] (hp : p # o0)

(n : measure o) [u.weakly_ regular]

(bounded_continuous_function E p u).topological_closure = T

The proof is in three steps. First, it suffices to prove the result for a scalar multiple of
a characteristic function of a measurable set s. This is because simple functions are dense
in L?, a result we obtained by refactoring an existing result in mathlib (contributed by
Zhouhang Zhou) for L! functions. Here is the most convenient form of that result, phrased as
an induction principle: to prove something for an arbitrary L” function in a second countable
Borel normed group, it suffices to show that

e the property holds for (multiples of) characteristic functions;
e is closed under addition;
e the set of functions in L? for which the property holds is closed.

lemma Lp.induction [measurable_space «] [normed_add_comm_group E]

{p : R>000} [fact (1 < p)] (hp_ne_top : p # 00) {u : measure «a}
(P : Lp Ep u — Prop)
(h_ind : V (¢ : E) {s : set o} (hs : measurable_set s)

(hus : pu s < 00),
P (Lp.simple_func.indicator_const p hs hus.ne c))
(h_,add : V {f g}, YV hf : mem_Lp f p u, Vhg : mem_Lp g p K,
disjoint (support f) (support g) — P (hf.to_Lp f)
— P (hg.to_Lp g) — P ((hf.to_Lp f) + (hg.to_Lp g)))
(h_closed : is_closed {f : Lp Ep u | P £}) :
VEi:LpEpwu, P£
The second step in the denseness result for continuous functions is to approximate the
given measurable set s above by an open set and below by a closed set; this is a consequence
of the weak regularity of the measure p. The third and final step is to find a continuous
function interpolating between these two sets. This is a consequence of Urysohn’s lemma,
contributed to mathlib by Yury Kudryashov, and is the step at which we use the fact that the
domain « is normal.
We also establish several variants of this theorem. The version used for the Fourier series
construction is that for compact « and finite-measure p, the natural continuous linear map
from C (e, E) to L?(«, E) has dense range.

9.2 Construction of an Explicit Hilbert Basis for L2(S, C)

Fourier series are usually considered for functions on a finite interval such as [0, 1] or [0, 27 ].
In this point of view, the Fourier coefficients of a function f : [0, 27] — C are its integrals
against the functions (e"”’)nEZ fort € [0, 2m].

In this work we take an approach which requires less special-case analysis, and which
is suggestive of the more general theory of the Pontrjagin dual of a topological group: to
consider Fourier series for functions on the unit circle S! := {z € C : |z| = 1}, in Lean
circle. In this point of view, the Fourier coefficients are obtained as the integrals of a
function f : ' — C against the “monomial” functions (z"),cz for z € S'.

In more recent work, the “additive circle” R/27Z has been constructed in mathlib as a
compact Hausdorff topological group and its Haar measure has been related to the Lebesgue
measure on its covering space R, allowing for a refactoring of the construction of Fourier
series to treat functions f : R/27Z — C. This unites the computational convenience of the
[0, 277 ] definition with the theoretical convenience of the S! definition. This refactor featured
work by Oliver Nash [29], Alex Kontorovich and David Loeffler as well as the authors; we
will not discuss it further in this article.
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As the “monomial” functions (z"), <7 are central to the definition of Fourier series and
the proof of Parseval’s identity, we introduce them in Lean in several forms. Firstly we define
these functions as a Z-indexed family in the bundled continuous function type C(S', C):

def fourier (n : Z) : C(circle, C) :=
{ to_fun := A z, z * n,
continuous_to_fun := _ }

(we omit the brief proof of their continuity). Later we introduce the unit Haar measure [14] u
on S! (in Lean haar_circle), from S!’s structure as a topological group, and consider the
monomial functions under the name fourier Lp p as elements of the space L?(S 1 ©)
(inLeanLp C p haar_circle) with respect to this measure. (A continuous function on
a compact topological space equipped with a finite-volume Borel measure is automatically
in L?))

The linear span of the monomials (z"),,c7 is easily checked to be a subalgebra (i.e., closed
under multiplication), to be closed under conjugation, and to separate points. Therefore,
by the Stone-Weierstrass theorem, contributed to mathlib by Scott Morrison, the functions
fourier are dense (in the topology of uniform convergence) in C(S!, C).

lemma span_fourier_closure_eq top
(span C (range fourier)).topological_closure = T

By the main theorem of Sect. 9.1, it follows that for each 1 < p < oo, the linear span of the
monomials (z"),cz is dense (in the L? topology) in L”(S', C).
lemma span_fourier_Lp_ closure_eq top

{p : R>000} [fact (1 < p)] (hp : p # o0)
(span C (range (fourier_Lp p))).topological_closure = T

The case of interest for us is p = 2: the space L2(SY, C) is a Hilbert space, with the inner
product of two functions given by the integral over S' of the pointwise quantity f(z)g(z).

A straightforward computation shows that the monomials (z"), <z are an orthonormal set in
this Hilbert space.

lemma orthonormal_fourier : orthonormal C (fourier_ILp 2)

Therefore, by the theory of Sect. 7.2, the family of functions fourier_ Lp 2 canbe elevated
to a Z-indexed Hilbert basis for L2(S'C):

def fourier_series : hilbert_basis Z C (Lp C 2 haar_circle)

Recall that this is by definition a bijective linear isometry from L%(S1, ) to 2z, ©),
accessedas fourier_series.repr. The agreement with the “traditional” definition of the
Fourier series of f € L*(S!, C) as a Z-indexed family of complex numbers obtained by inte-
gration against (z"),cz is a consequence of the lemma hilbert_basis.repr_apply_
apply from Sect. 7.2:

lemma fourier_series_repr (f : Lp C 2 haar_circle) (i : Z)
fourier_series.repr f i = f z : circle, z ~ (-i) * £ z 0 haar_circle

The L2 convergence of Fourier series is obtained from the lemma hilbert_basis.has_
sum_repr from Sect. 7.2:

lemma has_sum_fourier_series (f : Lp C 2 haar_circle)
has_sum (A i, fourier_series.repr f i - fourier_ILp 2 i) £

Finally, Parseval’s identity, that the sum of the squared norms of the Fourier coeffi-
cients of f € L2(S!,C) equals the L? norm of f, is a direct consequence of the fact
that fourier_series.repr is constructed to be a bijective linear isometry:

@ Springer



10 Page220f26 F. Dupuis et al.

lemma tsum_sqg fourier_series_repr (f : Lp C 2 haar_circle)
> i : Z, |fourier_series.repr f i| ~ 2
= f z : circle, ||f z|| » 2 9 haar_circle

By design, the mathematical arguments in this section are short and translate to Lean without
difficulty, requiring less than 200 lines of code in total. The mathematically difficult arguments
have all been covered in greater abstraction in the preliminary work, as described in Sects.
7.2 and 9.1.

10 Frobenius-Semilinear Maps and Isocrystals

Our formal development of semilinear maps was motivated by applications in functional
analysis to unify statements and proofs over R and C. But these maps are interesting and
fruitful objects of study in their own right. As an example of an interesting result about
semilinear maps that are not linear or conjugate-linear, we formalize the one-dimensional
case of a theorem of Dieudonné and Manin [26] (see Demazure [13, Chap. 4] for a classical
exposition and Lurie [23] for a modern outline without proof), which classifies the isocrystals
over an algebraically closed field of characteristic p > 0 (Sect. 2.6).

We denote the ring of p-typical Witt vectors over k by W k and the field of fractions
of this ring by K (p, k). This was defined in mathlib by Commelin and Lewis [12], along
with the Frobenius endomorphism frobenius : W k —+* W k.

For the remainder of this section, we work in a context where p is a prime natural number
and k is an integral domain of characteristic p with a pth root function.

variables (p : N) [fact p.prime] {k : Type*} [comm_ring k]
[is_domain k] [char_p k p] [perfect_ring k p]

Since the base ring k has characteristic p, frobenius satisfies the following property:

lemma coeff_frobenius_char p (x : W k) (n : N)
(frobenius x).coeff n = (x.coeff n) "~ p

The additional hypothesis that k has a pth root function implies that frobenius is in
fact an automorphism, and with k an integral domain, this induces an automorphism on the
field of fractions K (p, k). Locally we let ¢ (p, k) denote this map.

We will be interested in maps between K (p, k)-vector spaces that are semilinear in
¢ (“Frobenius-semilinear”). To facilitate the use of these maps, we add an instance of
ring_hom_inv_pair (Sect. 4.3) for ¢ and its inverse. We also introduce notation v
—/p, k1 v, andVv ~f![p, k] Vv, for the types of Frobenius-semilinear maps and
equivalences.

An isocrystal is a vector space over the field K (p, k) additionally equipped with a
Frobenius-semilinear automorphism.
class isocrystal (V : Type*) [add_comm_group V]

extends module K(p, k) V :=
(frob : v ~fl[p, k1 V)

We denote the map frobby ® (p, k) . We say two isocrystals overX (p,
(denoted v. >~/ [p, k] V) if there is a linear equivalence £ : V ~
which is “Frobenius-equivariant,” that is, for all x, ® (p, k) (f x)
x) .

k) are equivalent
[K(p, k)] V2
£ (®(p, k)

The Dieudonné—Manin theorem classifies the isocrystal structures in every finite dimen-
sion, up to this notion of equivalence, over an algebraically closed field k. We restrict

@ Springer



Formalized Functional Analysis... Page230f26 10

our attention to the one-dimensional case, where the classification can be stated quite
explicitly. The field K (p, k) is naturally a vector space over itself with dimension 1.
There is a standard family of Frobenius-semilinear automorphisms X (p, k) ~f![p,
k] K(p, k) indexed by the integers, namely p*m - ¢ (p, k) foreachm : Z, where
the Frobenius automorphism ¢ (p, k) is itself considered as a Frobenius-semilinear
automorphism. This induces a Z-indexed family of distinct isocrystals which we refer to
as standard_one_dim_isocrystal p k m, and we prove that any one-dimensional
isocrystal is equivalent to one of the these standard isocrystals.

lemma classification [field k] [is_alg_closed k] [char_p k p]

[add_comm_group V] [isocrystal p k V]
(h_dim : finrank K(p, k) V = 1)

3 (m : Z), nonempty (standard_one_dim_isocrystal p k m ~fi [p, k]l V)

The key to proving this statement is finding, for any a, b : W k with nonzero leading
coefficients, a vectorx : W k suchthat frobenius x * a = x * b.We define such
an x coefficient by coefficient by an intricate recursion that invokes the algebraic closedness
of k at each step to solve a new polynomial equation. The argument requires us to medi-
ate between different “levels” of polynomials—universal multivariate polynomials over Z,
and multivariate and univariate polynomials over k—which proved challenging. Arithmetic
operations on Witt vectors are notoriously complicated, and the machinery for universal cal-
culations introduced by Commelin and Lewis [12] does not apply here. This key lemma takes
550 lines to establish.

The remainder of the proof of the isocrystal classification theorem was remarkably straight-
forward. We needed to extend mathlib’s Witt vector library to show that when k is an integral
domain, W k is too. Modulo this and the previous key lemma, the proof (including the def-
initions of Frobenius-semilinear maps and isocrystals) takes only 100 lines.

The key lemma also constitutes the central argument in establishing that Witt vectors are
a discrete valuation ring, a theorem we established together with Johan Commelin.

instance [field k] I[char_p k pl [perfect_ring k pl
discrete_valuation_ring (W k)

11 Related Work

Given the fundamental importance of linear algebra, it is no surprise that theories have
been developed in many proof assistants. To our knowledge, none of these libraries define
semilinear maps, none prove the spectral theorem for compact operators, and none prove any
of the results we describe generically over R and C.

Mahmoud, Aravantinos, and Tahar [25] and Afshar et al. [3] both describe developments in
HOL Light of complex vector spaces. Both use encodings inherently specific to the complex
case; they do not generalize the work over the reals by Harrison [18].

Aransay and Divasén [4] introduce vector spaces over arbitrary fields to Isabelle/HOL,
using a careful combination of type classes and Isabelle’s locale feature. A paper by the
same authors [5] describes an experiment to generalize the Isabelle definition of a real inner
product space to a larger class of fields, using a type class that seems analogous to our class
is_R_or_C (Sect. 5.1). Implementing this idea systematically would probably involve pro-
viding a locale-based generalization of euclidean-space at the beginning of the Isabelle/HOL
mathematical analysis library, and the authors do not take this project on, despite noting how
useful the generalization would be.
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An Isabelle Archive of Formal Proofs entry by Caballero and Unruh [11] duplicates
much of the real vector space development in the complex setting, in the process intro-
ducing conjugate-linear maps and the complex adjoint operator. Little infrastructure seems
to be shared between the real and complex cases. Their development includes a proof of
Fréchet-Riesz over C, but does not indicate how it might specialize to R. Also motivated
by applications in quantum computation, Bordg et al. [9] define the conjugate-transpose, the
analogue of the adjoint in the matrix setting, but again do not generalize to arbitrary fields.

Perhaps related to the more expressive type theory, Coq developments of linear algebra
have taken more advantage of type polymorphism. The Mathematical Components library
[24] features a theory of modules over arbitrary scalar rings, as does Coquelicot [8]. Building
on both these libraries, MathComp-Analysis [1] develops structures used in functional anal-
ysis. A linear_for predicate in Mathematical Components expresses a concept which is
mathematically slightly more general than our semilinear_ map definition, but which has
less convenient properties under composition and inversion. In a branch of the Mathematical
Components repository, Cohen defines Hermitian forms, which diverge in behavior over
R and C similar to conjugate-linear maps. The approach here has some similarities to ours,
but preserves fewer definitional equalities; in particular, our conjugate-linear maps on R are
definitionally linear maps, while the analogous statement does not hold for the Mathematical
Components approach to Hermitian forms.

Boldo et al. [7] prove the real case of Fréchet—Riesz using Coquelicot, on the way to the
Lax—Milgram theorem, but do not address the complex case. Narita et al. [28] do the same
in Mizar. Cohen proves the diagonalization theorem for normal matrices in the same of the
Mathematical Components repository®. This is mathematically equivalent to the diagonal-
ization theorem for normal endomorphisms of a finite-dimensional space described at the
start of Sect. 8.2. Cohen’s matrix version could more easily be converted for use in verified
numerical analysis, whereas the abstract linear-map version we provide is more convenient
in mathematical applications and also admits a more streamlined proof.

An extensive development of Fourier series was written by Harrison in HOL Light, and
has been ported to Isabelle [30] by Paulson. This treatment covers quite a bit of the same
ground as ours, notably the theorem on L? convergence of Fourier series. It also covers
numerous topics not treated by us, including the Riemann-Lebesgue lemma (this is also
ongoing work in Lean of David Loeffler), Dini’s test and Cesaro summability. It is a much
more concrete treatment, proving numerous results in the special setting of L>([0, 27], R)
which we deduce from the abstract theory of Hilbert bases. Notably, it appears not to con-
tain Parseval’s identity, which comes effectively for free from our development of Hilbert
space theory. A further minor difference is that this development takes place over R (with
trigonometric functions) rather than over C (with exponential/monomial functions), due to
the restriction to real scalars in these languages’ functional analysis libraries.

A Metamath treatment of Fourier series by Glauco Siliprandi® has less overlap with ours,
primarily treating Fourier series of continuous functions.

6 https://github.com/math-comp/math-comp/pull/207.
7 https://github.com/jrh13/hol-light/blob/master/ 100/fourier.ml.

8 https://us.metamath.org/mpeuni/fourier.html.
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Supplementary Information

We maintain a guide through the code corresponding to this paper at https://robertylewis.
com/semilinear-paper/.
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