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Chapter 1

Introduction

The complexity of mathematical arguments and the difficulty in verifying their correctness
have grown substantially over the last decades. For this reason, mathematicians have been
paying increasing interest to the field of automated formal verification. Under this paradigm,
the mathematician produces a proof that resembles computer code. A verification program
executes this code and confirms that it can be used to construct a gapless formal deduction.
The epistemic merits of these interactive proofs have been much debated. Nevertheless,
as the systems have become more and more sophisticated, their ability to deliver a high
degree of confidence in the correctness of the results has begun to attract the notice of
mathematicians.

In the process of formally certifying the correctness of arguments, many interactive proof
environments incorporate calls to automated reasoning procedures, or tactics, that prove
certain auxiliary claims. For example, rather than manually solving a long system of linear
equations, the user can present the system and obtain the solution via a decision procedure
for linear arithmetic. A proof assistant, ideally able to manage much of the computation
automatically, frees the mathematician to focus on the higher structure of the proof.

Automated procedures of this sort exist for many domains and are often quite effective.
However, there are domains for which the decision procedures are in practice intractable,
and many others for which no procedure exists at all. These methods are generally effective
on domains that are in some sense homogeneous; domains which mix operations or sorts of
terms tend to be more difficult to decide. Of course, the interesting problems in mathematics
are often the harder ones to solve, and problems over these heterogeneous domains show up
frequently in interactive (and standard) proofs.

Even when a theory is decidable, the decision procedure can leave something to be de-
sired. These algorithms may be inefficient, ill-suited to producing proof terms, or difficult
or impossible to extend to larger theories. All of these flaws, to some extent or another,
constrain the use of automated techniques in interactive theorem proving. The ideal tactic
is quick to run, easily produces a “natural” proof that the proof assistant can interpret, and
will run in a variety of settings.

This thesis describes an automated technique for real arithmetic, developed jointly with
Jeremy Avigad and Cody Roux. Our system has the potential to overcome these flaws, at

5



the cost of decidability. Once implemented in a proof-producing manner, we hope that it
will be an important and useful tool in the interactive theorem proving toolkit.

The following sections provide background information about proof verification and de-
cision procedures, and motivate our technique. In Chapter 2, we describe the class structure
and architecture of our system; in Chapters 3 and 4, we explain its computational behav-
ior. Chapter 5 explores the system’s accomplishments and shortcomings, and compares it to
other proof techniques in use. Finally, Chapter 6 discusses ways in which our system might
be improved.

The description here aims to detail our system’s theory, architecture, and computational
abilities. It is suited for those who wish to understand the nuts and bolts, in order to use its
advanced features or extend its abilities. Casual readers may wish to see [6], which provides
a shorter overview of the system and its capacities. Sections of this thesis are taken directly
from this paper.

1.1 Automated Reasoning and Proof Verification

The first mechanized proof assistant, Mizar, was described by Andrzej Trybulec in 1973; it
wasn’t until 1975 that a working proof-checker was produced ([41]). Mizar’s language and
capacities expanded over the following decades, and the Mizar Mathematical Library – a
carefully maintained collection of Mizar proofs – is currently the largest unified collection
of formal proofs in existence ([61]). Until recently ([60]), Mizar had very little support for
automated methods, requiring users to make calculations explicit.

Since the introduction of Mizar, many systems have been developed based on many
different underlying logics. Perhaps the most popular systems under current development
are Coq ([11]), a powerful system based on constructive dependent type theory; the HOL
family ([32]), a collection of assistants built around a small higher-order logic kernel; and
Isabelle ([50]), a generic prover that can implement a number of underlying logics. In contrast
to Mizar, these systems all integrate substantial automation, and interact in varying ways
with other programs to verify complicated computational arguments. Lean, a forthcoming
proof assistant discussed in Section 6.1, will provide even more options for automation.

Thomas Hales’ Flyspeck project ([49], [51], [33]) provides an illustrative case study of
automation in formalized mathematics. In 1998, Hales and Ferguson announced a proof of
the Kepler conjecture, which states that the densest way to pack congruent three-dimensional
spheres is the “obvious” face-centered packing. Their formidable proof relied on a large
number of computations performed by an unverified C++ program, to check that certain
nonlinear inequality constraints are unsatisfiable. After referees announced that they could
not be 100% confident in the correctness of the proof, Hales began the Flyspeck project
in 2003 to formally verify the theorem. Hales announced the completion of Flyspeck in
August 2014. The project ultimately consisted of two parts. The first, corresponding to the
“traditional” portion of Hales’ original proof, was a formal proof in Isabelle that classified all
tame graphs. The second, computational, part of the proof was done by a verified program
in HOL Light. The Isabelle portion was mechanically translated into HOL Light, and the
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two parts were combined to create one unified proof.
Computation played an essential role in both the original proof of Kepler’s conjecture

and in the verification; confirming the inequality constraints by hand would be a hopeless
task for any mathematician. Efficiently verifying the calculations performed by the computer
proved to be extremely difficult, and the Isabelle formalization was completed much faster
([34]). Traditional techniques for algorithmically deciding nonlinear inequalities were far too
inefficient to be of use, and so the Flyspeck group had to develop methods specialized to
their purposes ([57]).

While rarely seen on the same scale as in the Flyspeck project, problems of verifying and
refuting inequalities on R are found often across fields of mathematics. Automated methods
to solve these problems that interact smoothly with proof assistants can be extremely desir-
able. In the following section we look at a number of procedures for related problems, some
of which have been implemented in proof-producing ways.

1.2 Decision Procedures for the Reals

Let TRCF denote the first-order theory of R under the operations + and ·, with constants 0
and 1 and relations = and <. (Note that −, ≤, >, and ≥ are easily definable using first-order
formulae.) This is known as the theory of real closed fields ; examples of real closed fields
include R, the real algebraic numbers, and the hyperreal numbers. A number of equivalent
necessary and sufficient conditions exist to establish that a given field F models TRCF ([19]).
Among others:

• There is a total order on F such that each element x ∈ F with x > 0 has a square root
y such that y · y = x, and every polynomial in F [x] of odd degree has at least one root.

• There is a total order on F such that the intermediate value theorem holds for all
polynomials in F [x].

• F is not algebraically closed, but its field extension F (
√
−1) is algebraically closed.

Alfred Tarski discovered in the 1930s (although did not publish a proof until 1948) that
TRCF admits quantifier elimination ([59]). As an immediate consequence of this observation,
one sees that TRCF is decidable. His proof involves defining a succession of formulae that are
used to transform a given sentence in the language of RCF into an equivalent quantifier-free
sentence. Once this new sentence has been derived, one can apply a simple technique for
deciding the truth of literals including only constants to decide the original sentence.

Tarski’s procedure generalizes a technique from Sturm for counting roots of a polynomial
in one variable. He describes how to construct formulae representing the nth derivative of
a polynomial α in variable ξ and the statement that ξ is a root of α of order n. Combining
these formulae, he obtains more complicated sentences Gn

ξ (α, β) that assert relations between
the number and orders of roots of polynomials α and β. These sentences G are shown to
have an equivalent quantifier-free form by a complex process that repeatedly divides α by
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β. Finally, arbitrary sentences are reduced to combinations of sentences of form G. Along
with an algorithm for deciding the satisfiability of quantifier-free sentences in this language,
this process amounts to a decision procedure for TRCF .

In addition to being rather arcane, Tarski’s proof is in effect a purely theoretical result.
While he gives a (more or less) explicit algorithm for deciding TRCF , the algorithm can

be shown ([44]) to have NONELEMENTARY complexity – that is, no tower function 22·
··
n

bounds the algorithm’s run time for all n, where n is the number of quantifiers. In fact,
Davenport and Heintz ([22] show that the quantifier elimination problem is necessarily at
least doubly exponential in n. Nonetheless, Tarski is optimistic in his monograph that his
algorithm will be implemented by “machines,” and refers frequently to the potential use of
these machines in mathematical research. He further holds out hope that his procedure may
be extended to include, for example, exponentiation.

Collins’ cylindrical algebraic decomposition method ([21], [10]) realizes the doubly expo-
nential bound on this decision problem. Given a set of polynomial inequalities F = {fi(x̄) >
0|fi : Rn → R}, one can define the notion of a cell decomposition for F , a partition of Rn on
each element of which the sign of fi is constant. Collins develops a process for projecting F
to lower dimensions, alongside a lifting technique for cells. When n = 1, the cell decompo-
sition can easily be found, and then iteratively lifted up to Rn. Checking the satisfiability
of a quantified conjunction

∧
F is then reduced to a similarly quantified sentence about the

n-dimensional cell structure, which is finite. While this technique significantly improves on
Tarski’s algorithm, and can in practice solve many problems, one can describe fairly simple
problems on which it fails. (We investigate the implementation of CAD in the system Z3
below, in Section 5.1.)

Various other techniques for deciding TRCF have been discovered, including ones by
Seidenberg [1954], Cohen [1969], and Hörmander [1983] ([56], [20], [38]). McLaughlin and
Harrison ([42]) describe a proof-producing implementation of Hörmander’s technique, a less
efficient but simpler analogue to CAD. As it is difficult to separate the “search” stage of this
algorithm from the “proof” stage, almost every part of their implementation is forced to be
proof-producing. Some general lemmas help to mitigate this somewhat, but their method
ultimately is extremely expensive to run. Proving the sentence (∀x)(−1 ≤ x ≤ 1 → −1 ≤
4x3 − 3x ≤ 1) takes over a minute on a standard desktop.

All of these methods decide problems over the full theory of real closed fields, including
both universal and existential quantifiers, but similar simpler theories can be interesting on
their own. Basu and Roy ([10]) give a singly-exponential time algorithm to decide problems
in the existential fragment of TRCF . Gröbner basis methods are efficient for problems in the
universal fragment of arithmetic involving equalities, but do not extend well to inequalities
([37]). And techniques of varying efficiency and completeness are known for the additive and
multiplicative fragments of TRCF , arithmetic over the integers, and various other domains.
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1.3 Combining Decision Procedures

In [4], Avigad and Friedman investigate the practicality of combining decision procedures for
the additive and multiplicative fragments of TRCF . Their investigation is partly motivated
by the observation that the simplicity of these subtheories is somewhat incongruous with
the complexity of TRCF . Since combining the subtheories does not produce the entirety of
TRCF , one might hope that this combination has an easier decision problem.

Formally, let Tadd[Q] denote the theory of the real numbers under the language consisting
of symbols

0, 1,+,−, <, . . . , fa, . . . ,

where for each a ∈ Q, the function symbol fa denotes the mapping x 7→ ax. We can similarly
define Tmul[Q], where the symbols + and − are replaced by × and ÷ respectively. Denote
Tadd[Q]∩Tmul[Q] by Tcomm[Q], and Tadd[Q]∪Tmul[Q] (a theory over the combined language)
by T[Q]. Since interactions between addition and multiplication are not axiomatized, T[Q]
is weaker than TRCF : it does not contain the rule for distribution.

Each of Tadd[Q], Tmul[Q], and Tcomm[Q] supports quantifier elimination via the Fourier-
Motzkin algorithm.1 Thus, each is complete and decidable. Avigad and Friedman go on to
show, via a reduction to the decision procedure for TRCF , that the universal fragment of
T[Q] is decidable as well. (However, the existential fragment of T[Q] embeds Hilbert’s 10th
Problem over Q, which is conjectured to be undecidable.)

This conclusion is in some sense disappointing, as it seems to show that the combination of
Tadd[Q] and Tmul[Q] is no less complex (and in fact more unwieldy) than TRCF . However, at
the end of the paper, Avigad and Friedman discuss “pragmatic” procedures to approximate
their decidability results. They liken their approximations to “heuristic procedures that
traverse the search space by applying a battery of natural inferences in a systematic way.”
While full decidability – even over the restricted theory T[Q] – may be infeasible, these
heuristic approximations are practical and often successful.

1.4 Polya: A Motivation

The various decision procedures described in Section 1.2 are quite powerful, and many are
applicable in a wide variety of situations. But, frustratingly, one need not look very far to
find situations in which most or all of these procedures fail. Consider as an example the
following valid implication:

0 < x < y, u < v ⇒ 2u+ exp(1 + x+ x4) < 2v + exp(1 + y + y4)

The inference is not contained in linear arithmetic or even the theory of real-closed fields.
The inference is tight, so symbolic or numeric approximations to the exponential function
are of no use. Backchaining using monotonicity properties of addition, multiplication, and
exponentiation might suggest reducing the goal to subgoals 2u < 2v and exp(1 + x+ x4) <

1See Section 3.2 of this thesis for a description of this elimination method.
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exp(1 + y + y4), but this introduces some unsettling nondeterminism. After all, one could
just as well reduce the goal to

• 2u < exp(1 + y + y4) and exp(1 + x+ x4) < 2v, or

• 2u+ exp(1 + x+ x4) < 2v and 0 < exp(1 + y + y4), or even

• 2u < 2v + 7 and exp(1 + x+ x4) < exp(1 + y + y4)− 7.

And yet, the inference is entirely straightforward. With the hypothesis u < v in mind, it
is easy to see that the terms 2u and 2v can be compared; similarly, the comparison between
x and y leads to comparisons between x4 and y4, then 1 + x+ x4 and 1 + y + y4, and so on.

The following chapters of this thesis propose a method based on such heuristically-guided
forward reasoning. While not a complete decision procedure for TRCF , this method is suc-
cessful over a large class of problems; because of its modular structure, it can solve problems
over expansions of TRCF . Furthermore, unlike many comparable tools, it can separate proof
search from proof construction, and can thus be efficiently adapted to produce proof cer-
tificates. The project can be seen as a realization and extension of Avigad and Friedman’s
approximate decision procedure for T[Q]. It systematically applies “natural inferences” –
canceling terms using addition and multiplication, instantiating axioms in “obvious” ways –
to prove theorems in expansions of the language of real closed fields.

The method has been implemented in Python, and a preliminary release of the code is
available at

https://github.com/avigad/polya.

We have named the system “Polya,” after George Pólya, in recognition of his work on in-
equalities as well as his thoughtful studies of heuristic methods in mathematics. Henceforth,
we use “Polya” to refer to the implementation, rather than the system in abstract.

10
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Chapter 2

Architecture

In this chapter, we will take a look at the foundational architecture of the system. Polya
consists of a complex information database (the Blackboard, Section 2.2) that serves as an
interface between various inferential modules (discussed in Chapters 3 and 4). Users are
able to interact with the system in a variety of ways (see Section 2.4), which allow differing
degrees of control over the system’s behavior.

Polya’s structure has been largely inspired by the Satisfiability Modulo Theories (SMT)
approach to automated theorem proving. SMT solvers typically consist of a boolean SAT
solver that communicates with various specialized theory solvers. Formulae are given as
boolean combinations of theory literals, which the SAT solver treats as atomic; it searches
for satisfying instances of the boolean problem, and consults with the theory solvers whether
these assignments are feasible. This approach (based on the theory-combination algorithm
of Nelson and Oppen [48]) is analogous to the combination procedure discussed in Section
1.3, with theories whose languages share only the symbol for equality.

In some sense, then, Polya represents a generalization of the SMT technique to theories
with overlapping alphabets. In other senses, of course, Polya is much weaker. For one, it
lacks the capacity for backtracking and conflict-driven clause learning often found in the SAT
core of an SMT solver. More importantly, restricting the common language to equality gives
the SMT search a useful finite basis property: for a fixed number of variables x1, . . . , xn,
there are only finitely many ways to assign literals xi = xj or xi 6= xj for pairs i, j. Our
system lacks this property, since literals have the form xi ./ c · xj with infinitely many
possibilities for c. Nonetheless, the comparison between the two frameworks is strong, and
one can imagine fruitful improvements to Polya by thinking about SMT.

2.1 Term Structure and Normal Forms

We wish to consider terms, such as 3(5x + 3y + 4xy)2f(u + v)−1, that are built up from
variables and rational constants using addition, multiplication, rational powers, and function
application. To account for the associativity of addition and multiplication, we view sums
and products as multi-arity rather than binary operations. We account for commutativity
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by imposing an arbitrary ordering on terms, and ordering the arguments accordingly.
Importantly, we would also like to easily identify the relationship between terms t and t′

where t = c · t′, for a nonzero rational constant c. For example, we would like to keep track
of the fact that 4y + 2x is twice x+ 2y. Towards that end, we distinguish between “terms”
and “scaled terms”: a scaled term is just an expression of the form c · t, where t is a term
and c is a rational constant. We refer to “scaled terms” as “s-terms” for brevity.

Definition 1. We define the set of terms T and s-terms S by mutual recursion:

t, ti ∈ T := 1 | x |
∑

i si |
∏

i t
ni
i | f(s1, . . . , sn)

s, si ∈ S := c · t .

Here x ranges over a set of variables, f ranges over a set of function symbols, c ∈ Q, and
ni ∈ Z.

Thus we view 3(5x + 3y + 4xy)2f(u + v)−1 as an s-term of the form 3 · t, where t is the
product t21t

−1
2 , t1 is a sum of three s-terms, and t2 is the result of applying f to the single

s-term 1 · (u+ v).
Note that there is an ambiguity, in that we can also view the coefficient 3 as the s-term

3 · 1. This ambiguity will be eliminated when we define a notion of normal form for terms.
The notion extends to s-terms: an s-term is in normal form when it is of the form c · t, where
t is a term in normal form. (In the special case where c = 0, we require t to be the term 1.)
We also refer to terms in normal form as canonical, and similarly for s-terms.

To define the notion of normal form for terms, we fix an ordering ≺ on variables and
function symbols, and extend that to an ordering on terms and s-terms. For example, we
can arbitrarily set the term 1 to be minimal in the ordering, then variables, then products,
then sums, and finally function applications, recursively using lexicographic ordering on the
list of arguments (and the function symbol) within the latter three categories. The set of
terms in normal form is then defined inductively as follows:

• 1, x, y, z, . . . are terms in normal form.

•
∑

i=1...n ci · ti is in normal form provided c1 = 1, each ti is in normal form, and t1 ≺
t2 ≺ . . . ≺ tn.

•
∏

i t
ni
i is in normal form provided each ti is in normal form, and 1 6= t1 ≺ t2 ≺ . . . ≺ tn.

• f(s1, . . . , sn) is in normal form if each si is.

The details are spelled out in Avigad and Friedman ([4]). That paper provides an explicit
first-order theory, T , expressing commutativity and associativity of addition and multiplica-
tion, distributivity of constants over sums, and so on, such that the following two properties
hold:

1. For every term t, there is a unique s-term s in canonical form, such that T proves t = s.
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2. Two terms t1 and t2 have the same canonical normal form if and only if T proves
t1 = t2.

For example, the term 3(5x+3y+4xy)2f(u+v)−1 is expressed canonically as 75 · (x+(3/5) ·
y + (4/5) · xy)2f(u+ v)−1, where the constant in the additive term 5x+ 3y + 4xy has been
factored so that the result is in normal form.

The two clauses above provide an axiomatic characterization of what it means for terms
to have the same canonical form.

2.2 Blackboard

The Blackboard serves as the system’s information database, through which various modules
communicate and share information. Metaphorically, we picture a number of mathematicians
trained in different specialties working out problems on their own and writing results in a
central location, where the results can be used as “black boxes” by the other mathematicians.
The Blackboard does little computation itself, but tracks the information given to it in search
of contradictions.

When the user asserts a comparison s1 ./ s2 to the Blackboard, s1 and s2 are first put
in canonical form, and names t0, t1, t2, . . . are introduced for each subterm. It is convenient
to assume that t0 denotes the canonical term 1. Given the example in the last section, the
method could go on to define

t1 := x, t2 := y, t3 := t1t2, t4 := t1 + (3/5) · t2 + (4/5) · t3,
t5 := u, t6 := v, t7 := t5 + t6, t8 = f(t7), t9 := t24t

−1
8

In that case, 75 · t9 represents 3(5x+ 3y + 4xy)2f(u+ v)−1.

Any subterm common to more than one term is represented by the same name. Separat-
ing terms in this way ensures that each module can focus on only those definitions that are
meaningful to it, and otherwise treat subterms as uninterpreted constants.

Any comparison s ./ s′ between canonical s-terms, where ./ denotes any of <,≤, >,≥,=,
or 6=, translates to a comparison citi ./ cjtj, where ti and tj name canonical terms. But this,
in turn, can always be expressed in one of the following ways:

• ti ./ 0 or tj ./ 0, or

• ti ./ c · tj, where c 6= 0 and i < j.

The blackboard therefore maintains the following data:

• a defining equation for each ti, and

• comparisons between named terms, as above.
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Note that this means that, a priori, modules can only look for and report comparisons
between terms that have been “declared” to the blackboard. This is a central feature of
our method: the search is deliberately constrained to focus on a small number of terms of
interest. The architecture is flexible enough, however, that modules can heuristically expand
that list of terms at any point in the search. For example, our addition and multiplication
modules do not consider distributivity of multiplication over addition, beyond multiplication
of rational scalars. But if a term x(y+z) appears in the problem, a module could heuristically
add the identity x(y + z) = xy + xz, adding names for the new terms as needed.

2.2.1 Hierarchy of comparison types

Eight types of information are stored in the Blackboard class in Polya:

• Term definitions. The Blackboard is responsible for canonizing terms as described in
Section 2.1, and for isolating and naming terms of different types. As a problem is
described to the Blackboard, relevant subterms are associated with indices from 1 to
n. We refer to these subterms as problem terms ; the IVar tk is a variable defined
to be equal to the kth problem term. These definitions are stored in an array in the
Blackboard. Recall that we follow the convention t0 := 1.

Modules cannot explicitly assert term definitions to the Blackboard. However, modules
are able to request from the Blackboard a name for a given term s. The Blackboard
will return an index k such that the IVar tk is equal to s, if such an index is available;
if not, the Blackboard optionally can create a new term defined to be the canonization
of s, along with any subterms needed.

• Equalities between IVars. Two syntactically equal terms will be canonized to the
same form, and will thus be identified in the Blackboard by the same IVar index.
However, terms may be found to be equal (perhaps up to a constant multiple) in other
ways, either by hypothesis, by arithmetic, or by computation from other modules. The
Blackboard stores equalities between IVars ti and tj in a dictionary mapping (i, j) to
a nonzero rational constant c, representing that ti = c · tj. The case ti = 0 is special,
as it implies ti = 0 · tj for all 0 ≤ j ≤ n; it is thus handled separately.

• Equalities with 0. There are again various ways in which the Blackboard could learn
that an IVar is equal to 0. The Blackboard stores a list of indices i such that ti = 0.
This information supersedes equality with other IVars: from ti = 0 the Blackboard can
deduce all relevant comparisons between ti and tj, regardless of how much information
it has about tj.

• Disequalities between IVars. The Blackboard tracks information of the form ti 6= c · tj
by maintaining a dictionary that maps (i, j) to a list of rational constants [c1, . . . , ck].
This information is superseded1 by equality information between tj and tj, and can be
superseded by inequality information.

1Mostly. If ti = c1 · tj , the fact that ti 6= c2 · tj is not irrelevant, as it implies that ti, tj 6= 0.
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• Disequalities with 0. Similarly, the Blackboard tracks information of the form ti 6= 0
by maintaining a list of indices.

• Inequalities between IVars. For two IVars ti and tj, the Blackboard may learn that
ti ./ c · tj for ./ ∈ {<,≤,≥, >}. It is easy to see geometrically that absent any equality
information, exactly two noncollinear comparisons of this form completely describe the
known relationship between ti and tj: any third comparison of this form will either
be implied by the others, contradict them, or replace one. This is described in more
detail in Section 2.2.2 below, along with a description of the Halfplane data structure
for tracking inequalities.

• Inequalities with 0. The Blackboard stores sign information for IVars. This infor-
mation can often be computed from comparisons between IVars. However, since it is
often of vital importance for modules to access signs of variables, the information is du-
plicated in a more easily accessible structure. The Blackboard maintains a dictionary
that maps i to one of {<,≤,≥, >}.

• Clauses. Finally, the Blackboard stores disjunctive information. The Blackboard may
be told that one of a list of comparisons must be true, without being told which one; it
stores these lists and updates them as literals are confirmed or falsified. This structure
is explained in more detail in Section 2.2.6.

The data hierarchy tries to minimize redundant information by storing only the strongest
available comparisons. If an equality is known between ti and tj, it is unnecessary to store any
inequality or disequality information between those variables; similarly, if two inequalities
are known, this implies infinitely many disequalities that do not need to be stored.

Minimizing the storage of redundant information requires care in maintaining each data
structure. Sign information about ti and tj can affect whether an inequality ti < c · tj
is redundant or not, so the inequalities structure must take this information into account.
Methods for adding information to one of these data structures must be able to update the
others as well: adding ti > 0 to the list of inequalities with 0 requires removing ti 6= c · 1
from the list of disequalities for all negative c.

2.2.2 Halfplane representation of inequalities

We claim above that to understand the relationship between two variables ti and tj absent
equality information, it is sufficient to know two comparisons of the form ti ./ c · tj, where
./ ∈ {<,≤,≥, >}. Here we explain this more thoroughly, and detail the data structure
for storing such inequalities. Comparisons of the form ti, tj ./ 0 complicate this discussion
somewhat. It is convenient to allow c to take the values 0 and∞; as the following description
is largely geometric, we think of these simply as horizontal and vertical lines. The translation
of these ideas back to their algebraic descriptions, and their implementations in Polya, are
conceptually trivial but tedious to describe.
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An equality ti = c ·tj corresponds to a line through the origin in the titj coordinate space.
If the equality is changed to an inequality, ti ./ c · tj corresponds to the halfplane on one side
of this line. The halfplane contains the origin (and its defining boundary line) exactly when
./ is a weak inequality ≤ or ≥. Under this representation, a conjunction of two inequalities
is represented by an intersection of their corresponding halfplanes; unless the halfplanes have
identical boundaries, their intersection will be a nonempty segment of the plane that is a
proper subset of both halfplanes. This shows that, disregarding degenerate cases, knowing
one inequality between two variables is insufficient to fully describe their relationship.

Furthermore, any satisfiable conjunction of three inequalities contains redundant infor-
mation; one of its conjuncts may be discarded. (In other words, knowing two inequalities
between two variables is always sufficient to fully describe their relationship.) Let H1, H2,
and H3 denote the corresponding halfplanes. We assume that none of these halfplanes have
identical boundaries, as such edge cases are easy to eliminate. There are three cases to
consider geometrically.

1. H1 ∩ H2 ∩ H3 = ∅. If the intersection is empty, the conjunction of the inequalities is
unsatisfiable.

2. H1 ∩ H2 ⊂ H3. In this case, the conjunction of the first two inequalities implies the
third, which may be discarded.

3. The boundary line ∂H3 intersects H1 ∩ H2. In this case, either H1 ∩ H3 ⊂ H1 ∩ H2

or H2 ∩H3 ⊂ H1 ∩H2. If the former, the second inequality may be discarded; if the
latter, the third may be discarded.

It is in this sense that we say two inequalities represent “complete” information between
ti and tj.

These considerations also suggest halfplanes as a natural way of representing inequali-
ties. We use this technique to store inequality information in the Blackboard. A Halfplane
object is defined by a vector (a, b) and a boolean strong, representing the halfplane coun-
terclockwise from (a, b) and containing the line connecting (a, b) to the origin iff strong is
false. Comparisons between ti and tj are tracked by mapping (i, j) to a list of between zero
and two Halfplanes, representing the conjunction of their corresponding inequalities. When
two inequalities are known, we maintain that the defining ray of the first Halfplane is coun-
terclockwise of that of the second. Note again that we may assume these halfplanes have
distinct boundaries, since it is simple to reduce cases otherwise. If (a1, b1) and (a2, b2) are
coincident, then either the Halfplanes are equal or exactly one is strong, in which case the
other is redundant. If (a1, b1) and (−a2,−b2) are coincident, then either both are not strong
and the comparisons imply an equality, or at least one is strong and the comparisons are
contradictory.

Given two inequalities H1 and H2, we often face the problem of determining whether a
third inequality represented by H3 is redundant, contradictory, or contains new information.
With our representation, this is easily accomplished with simple arithmetic. If the defining
vectors of H3 lies between those of H1 and H2 (that is to say, H1 is counterclockwise of H3
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(a) The halfplane representing ti ≤ 2 · tj .
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tj

(b) Overlayed with ti ≤ −tj .
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(c) Intersection represents their conjunction.
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tj

(d) ti ≤ −1/2 · tj is implied.
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tj

(e) ti ≥ −1/2 · tj is contradictory.

ti

tj

(f) ti ≥ −2 · tj is new information.

Figure 2.1: Representation of inequalities by halfplanes
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which is counterclockwise of H1), then H3 is redundant. If the negation of H3 (obtained
by reflecting its defining vector through the origin) is redundant, than H3 is contradictory.
Otherwise H3 contains new information. Either H3 is counterclockwise of both H1 and H2,
in which case it replaces H1, or it is clockwise of both, in which case it replaces H2.

We note that (a, b) is clockwise of (c, d) exactly when a · d− b · c > 0, a formula derived
from the right-hand cross product.

Figure 2.1 illustrates the Halfplane representation of inequalities. In Figure 2.1a, the
vector (2, 1) stands in for the inequality ti ≤ 2 · tj; the halfplane counterclockwise of (2, 1) is
shaded. (We have included the reflection of (2, 1) through the origin for the sake of clarifying
the picture. It is not part of the Halfplane representation.) In Figure 2.1b, the vector (−1, 1)
has been added, representing ti ≤ −tj. Their intersection, visible as the darkly shaded region
in Figure 2.1c, represents the conjunction of the two inequalities. In Figure 2.1d, we see that
this conjunction implies ti ≤ −1/2 · tj, since the intersection lies inside the new halfplane.
Figure 2.1e similarly shows that the conjunction contradicts ti ≥ −1/2 · tj. Finally, 2.1f
shows that the inequality ti ≥ −2 · tj contains new information, since its halfplane intersects
the feasible region; to be precise, the conjunction of this with ti ≤ −tj implies the original
inequality ti ≤ 2 · tj.

2.2.3 The implies routine

It is often necessary to determine whether the information stored in the Blackboard implies
a given comparison ti ./ c · tj. Since different types of comparisons are stored in different
data structures, and certain types of comparisons imply comparisons of other types (e.g., an
equality can imply an inequality), this routine is fairly complex. Its behavior is documented
here in greater detail.

Since the Blackboard stores comparisons with 0 differently than comparisons between
terms, the implies routine must handle this as a special case. When the routine is asked
whether a comparison ti ./ 0 is implied, its behavior depends on the type of the comparison
./.

• ./ is =. Equality information is not superseded by any other type of information.
ti = 0 is implied only when i is in the list of zero equality indices.

• ./ is 6=. This is implied when i is in the list of zero disequality indices, or when one of
ti > 0 or ti < 0 is known.

• ./ is < or >. This is implied when ./ exactly matches the value for i in the zero
inequality dictionary.

• ./ is ≤ or ≥. This is implied when the direction of ./ matches the direction of the value
for i in the zero inequality dictionary, or when i is in the list of zero equality indices.

Similarly, the process to check whether ti ./ c · tj again depends on the type of ./.
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• ./ is =. This is implied when (i, j) maps to c in the term equality dictionary, or when
both ti and tj are equal to 0.

• ./ is 6=. This is implied when (i, j) maps to a list containing c in the term disequality
dictionary, or when the Blackboard implies either ti > c · tj or ti < c · tj.

• ./ is <,≤,≥, or >. This is the most difficult case, and splits into four subcases.

– If either ti or tj are known to be zero, the comparison reduces to the previous
algorithm.

– If an equality ti = d · tj is known, use available sign information to check if the
inequality must be satisfied. At least one of the points (d, 1) and (−d,−1) must
cohere with the available sign information for ti and tj; otherwise, the equality
and sign information would already have been seen to be unsatisfiable. If all such
coherent points satisfy ti ./ c · tj, then that inequality is implied.

– If the coefficient c appears in an inequality between ti and tj already stored in the
term inequalities dictionary, check if the old inequality is stronger than the new.

– Otherwise, the situation reduces to a small number of cross product computations
as described in the previous section to determine if the new inequality is subsumed
by the others.

While the implies routine has many cases that make it difficult to describe, it is compu-
tationally cheap to perform. As such, both the comparison assertion routine (Section 2.2.5)
and the clause manager (Section 2.2.6) are able to use it extensively without slowdown.

2.2.4 Implied coefficient ranges

Given IVars ti and tj and ./ ∈ {<,≤,≥, >}, it can be useful to find a range of coefficients
[a, b] such that the Blackboard implies ti ./ c · tj for all c ∈ [a, b].2 It is not always possible
to find such a range – the comparison may be implied only for a single c, or for no c at all.
Alternatively, the interval may be unbounded – a could be −∞, or b could be ∞. (In these
cases, the left or right sides of the interval would be open.)

This information is not difficult to compute with the Halfplane representation of com-
parisons. Geometrically, we can equate this interval with a range of angles, such that for
each angle in this range, the halfplane defined by a vector at this angle contains the feasible
sector for ti and tj. Depending on the direction of ./, this range of angles will fall either in
the first and second or the third and fourth quadrants of the plane.

We describe the process when ./ is > or ≥. Given the interval [a, b], there are a number
of possible combinations of these strengths: we may know either a strict or a nonstrict
inequality at either endpoint and in the interior. These possibilities are not independent.

2At the time of writing, the module that interprets the minimum function relies heavily on this routine.
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If a strict inequality is known at either endpoint, then a strict inequality is known in the
interior as well. Thus, the possible situations are:

ti ≥ a · tj; ti ≥ b · tj; ti ≥ c · tj for c ∈ (a, b)

ti > a · tj; ti ≥ b · tj; ti > c · tj for c ∈ (a, b)

ti ≥ a · tj; ti > b · tj; ti > c · tj for c ∈ (a, b)

ti > a · tj; ti > b · tj; ti > c · tj for c ∈ (a, b)

Here we omit the details of distinguishing these cases. Readers interested in these details
should see the get ge range method in blackboard.py in the Polya source code.

Let i and j be given; we wish to determine from the Blackboard the range [a, b] of c
such that ti ≥ c · tj. We consider a number of cases. If no inequalities and no equalities are
known between i and j, of course, this range is empty. Suppose that an equality ti = d · tj
is known. If no sign information is available for either ti or tj, then the only provable
inequality is ti ≥ d · tj, and so a = b = d. Knowing the sign of either ti or tj, along with
this equality, is enough to derive the sign of the other. With this information, the range
[a, b] can be found quickly: in the case where ti, tj, and d are all positive, then ti ≥ c · tj
for c ∈ (−∞, d], and analogously for other combinations of signs. Note that knowing an
equality and a noncollinear inequality implies sign information for both variables.

If no equality is known, and only one inequality ti ./ d · tj is known, then again we
see a = b = d exactly when ./ ∈ {≥, >}. The difficult case comes when two inequalities
ti ./ d ·tj and ti ./ d ·tj are known. Recall that comparisons can be represented by halfplanes,
which can in turn be represented as vectors (with the convention that (x, y) stands for the
halfplane counterclockwise of itself). A comparison of the form ti ≥ c · tj then corresponds
to a vector in the third or fourth quadrant of the plane. (Otherwise, the comparison would
be ≤.) Let v1 and v2 represent the vectors corresponding to the given inequalities, such that
v2 is clockwise of v1.

The vector (1, 0) corresponds to the comparison “ti > −∞·tj” (i.e., tj > 0) and the vector
(−1, 0) to “‘ti >∞ · tj” (i.e., tj < 0). Our search for the interval [a, b] can be pictured as a
vector starting at (1, 0) and “sweeping” clockwise through the fourth and third quadrants to
(−1, 0). If, during this sweep, the vector crosses v1, then v1 represents the beginning of the
interval; otherwise, (1, 0) does. Similarly, if the sweeping vector crosses v2, then v2 represents
the end of the interval; otherwise, (−1, 0) does. (A vector is transformed to a value for a or
b by mapping (x, y) 7→ x/y.) Equivalently, this process finds the intersection of the set of
vectors between v1 and v2 with the third and fourth quadrants.

When ./ is ≤, we picture the vector sweeping through the upper half-plane rather than
the lower. All computations are analogous.

2.2.5 Asserting comparisons

In addition to requesting definitions and information about comparisons, modules often
assert new information to the Blackboard. The Blackboard must categorize this information
and, if necessary, store it appropriately.
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(a) As the lighter vector sweeps from (1, 0)
to (−1, 0), it crosses v1 and then v2.

ti

tj

v2

v1

(b) When it is between these two vectors, the
inequality it represents is implied; the slopes
of v1 and v2 indicate the range (a, b).

Figure 2.2: Illustrating the coefficient range search.

With the machinery defined so far, it is easy to identify redundant and contradictory
information. A comparison ti ./ c · tj is redundant if it is implied by the Blackboard, and
contradictory if its negation is implied. Otherwise, the information is new and must be
recorded.

While the recording process is largely straightforward, there are a number of dependencies
to track. An inequality ti ./ 0 may affect comparisons between ti and tj for some or all j.
Similarly, a disequality ti 6= c · tj could force a weak inequality ti ≤ c · tj to become strict.
The details to maintain the hierarchy of comparisons are tedious and unnecessary to list here
in full, but can be seen in the Polya source code.

2.2.6 Clauses

Some routines – axiom instantiation and case-splitting, in particular – will not always learn
comparisons directly, but will instead derive disjunctive (or conditional) information. It is
natural to store a piece of information of this type in the Blackboard, and to update it as
new comparisons are learned.

Call a disjunction of comparisons
∨m
k=1 t1,k ./k ck · t2,k a clause. If any comparison in

the clause (called a literal) is implied by the Blackboard, the entire clause is as well; if the
negation of every literal is implied, then the clause is false. The Blackboard stores a list of
clauses, maintaining that each literal is provable neither true nor false. As new information
is asserted, the Blackboard updates these clauses, removing satisfied clauses and falsified
literals. If a clause is reduced to a single literal, the Blackboard adds the comparison to its
database; if a clause is reduced to zero literals, it is shown to be false and a contradiction
has been derived.
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2.3 Inference

A Blackboard object is a static representation of known facts, akin to a chalkboard with
notes but no note-writers. In order to produce a proof, someone or something must take
these facts and use them to infer new ones. Our system incorporates a number of inferential
modules to do this, illustrated in Figure 2.3.

Blackboard
Stores

definitions and

comparisons

Additive Module
Derives comparisons using

additive definitions

Multiplicative Module
Derives comparisons using

multiplicative definitions

Axiom Instantiation
Module

Derives comparisons using

universal axioms

Exp/Log Modules
Derive comparisons and

axioms involving exp and

log

Min/Max Modules
Derive comparisons

involving min and max

Congruence Closure
Module

Enforces proper

interpretation of functions

Absolute Value Module
Derives comparisons and

axioms involving abs

nth Root Module
Derives comparisons and

axioms about fractional

exponents

Figure 2.3: The inferential structure.

Each individual module is described in detail in the following chapters. Here, we simply
note their common structure. Each module is equipped with an update blackboard routine,
which takes as an argument a Blackboard B. This routine selectively requests information
from B, computes with it, and asserts new facts back to B. To the Blackboard, each
module is a trusted black box. The modules are generally unaware of each other, with a
few exceptions: the modules for interpreting absolute values, exponentials, and logarithms
access the axiom instantiation module in order to axiomatize their respective functions.

Modules are expected to saturate the Blackboard each time they are run: that is, running
a module twice in a row should produce no new inferences the second time. Furthermore,
modules should satisfy a monotonicity condition: if a module could infer comparisons C
from a Blackboard B, and Blackboard B′ is such that every comparison in B is implied
by B′, then the module should infer comparisons C ′ from B′ such that B′ ∪ C ′ implies
each comparison in C. Note that information asserted to a Blackboard is never lost; thus,
successively running modules on a Blackboard B will produce a sequence B′, B′′, . . . of
Blackboards with monotonically increasing information. Polya will accommodate modules
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that do not meet these conditions, but this may lead to curious or seemingly unpredictable
behavior.

Running Polya thus amounts to asserting hypotheses to a Blackboard, and then repeat-
edly updating the Blackboard using the various available modules. If at some point the
Blackboard receives contradictory information, the process has proven the unsatisfiability of
the hypotheses. From the saturation condition, we see that if the Blackboard reaches a state
where no module can learn any new information, the process terminates with no answer.
Further, from the monotonicity condition, the order in which the modules are run does not
affect the final answer as long as each is tried before terminating. (Of course, the order can
affect the speed at which an answer is found.) Unfortunately, as long as this requirement
is met, there are examples for which the process is nonterminating: see Section 5.3 for a
discussion of this possibility.

Unless the user specifies otherwise, the built-in methods to compute with Polya will
cycle through its modules in a fixed order. We foresee that users may want more control
over the computational process, though, or may want to add additional modules (to interpret
additional function symbols, say). This capacity is available, and the various interfaces are
described in the following section.

2.4 User Interface

Polya is implemented in Python, and can be imported into any Python script as a library.
Importing Polya gives the user access to the following classes and ways of interacting with
the system.

First, users can declare variables and function objects:

x = Var(‘x’)

y, z, w = Vars(‘y z w’)

f = Func(‘f’)

Note that variables always represent real numbers. Optionally, users may define a spe-
cialized canonization procedure when constructing a function object; this is described in the
Polya API, available with the source code.

More complex terms can be created by combining variables, and these terms can be
combined into comparison objects:

t1 = x + 2*y + f(z*w)

t2 = t1**2 * (4 + z)

c = (t1 <= 4*t2)

d = (x != f(y, w))

The user can write axioms describing the behavior of functions:

ax1 = Forall([x, y], Implies(x <= y, f(x) <= f(y)))

ax2 = Forall([x], And(Or(f(x)<0, x<0), Not(f(x)>10)))
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The most immediate way to have Polya attempt to prove a theorem is to use the solve

command.

solve(x > 0, y < 0, x*z < y*z)

This command will run Polya’s default modules (see Chapters 3 and 4) in succession
until either a contradiction is found, or no new information can be derived. It will return
True in the former case, otherwise False.

The solve command can be overly simplistic for many cases; in particular, it does not
allow the user to assert axioms about functions. We have implemented a Solver class, that
will store information and run on demand:

s = Solver()

s.add(x > y, f(x) < f(y))

s.add(Forall([x, y], Implies(x <= y, f(x) <= f(y))))

s.check()

The Solver constructor takes optional arguments assertions, a list of comparisons to
be added immediately; axioms, a list of axioms to be handled similarly; and modules, a list
of modules to run. The latter argument will be used only in rare circumstances where the
user wants to run a customized module or to avoid a default module; if the argument is not
provided, the Solver will run all of the default modules in (cyclic) sequential order. At any
point, the user may add an additional module to the end of the cycle, or define a new list of
modules:

s = Solver()

m = MyNewModule()

s.append_module(m)

s.set_modules([FMAdditionModule(), m])

If the necessary external packages are present, the solver will default to using polyhedron
arithmetic methods (Section 3.4), and otherwise default to Fourier-Motzkin methods (Section
3.2). Users may force both the solve method and the Solver class to use one method or
the other by the following commands:

set_solver_type(‘poly’)

s = Solver()

s.set_solver_type(‘fm’)

Some problems may only be solvable by case-splitting on the directions of one or more
comparisons. Most commonly, these splits occur on x ./ 0. Case splitting may be enabled
in general by setting a default split depth and breadth, or by instantiating a Solver object
with these parameters:

set_split_defaults(3, 10) # depth, breadth

s = Solver(split_depth=3, split_breadth=10)
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Finally, there are conceivable situations where the user may want more control over the
Blackboard and the modules’ computational order than the Solver class offers. Polya allows
users to create and manipulate these objects directly.

b = Blackboard()

b.assert_comparison(x > y, x < 3*y)

b.get_le_range(1, 2)

b.assert_comparison(f(x) < f(y))

am, mm, fm = FMAdditionModule(), FMMultiplicationModule(), AxiomModule()

fm.add_axiom(Forall([x, y], Implies(x <= y, f(x) <= f(y))))

fm.update_blackboard(b)

am.update_blackboard(b)

Polya supports different levels of feedback via its messages system. At any point, the
user may change this level to any of quiet, modules, low, normal, or debug:

messages.set_verbosity(messages.quiet)

A more complete API and example Python files are available on the project website.
Most users will find the Solver class sufficient for their purposes.
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Chapter 3

Arithmetical Modules

The heart of our procedure lies in proving arithmetical facts by separating the additive
and multiplicative parts of terms. To this end, we have developed two modules that learn
new comparisons about additive and multiplicative terms respectively. In fact, we have
developed two versions of each of these modules. The first approach uses Fourier-Motzkin
variable elimination to deduce new facts; the second makes use of geometric insights to
eliminate redundant computation, and depends on external software packages to run.

3.1 Problem Description

To illustrate the tasks of the arithmetical modules, we will first describe the behavior of the
additive routine. The multiplicative routine is largely analogous; the small differences are
noted below.

Given a collection of additive term definitions {ti =
∑

0≤j<i ci,jtj}1≤i≤n and a collection
of atomic comparisons {ti ./ ci,jtj}, for ./ ∈ {<,≤,=,≥, >}, our goal is to derive the
“strongest” atomic comparisons between each pair ti and tj implied by the input. The
notion of strength here is slightly subtle. For any ti and tj, two atomic comparisons ti ./ ctj
are necessary to have complete information about their relation.1 For any set of three
atomic comparisons, either one comparison is implied by the others, or the comparisons are
unsatisfiable. This is easy to see by considering each comparison as a half-plane including
the origin, as in the following picture.

The strongest available information is thus either the set of two derivable comparisons
producing the smallest sector, or (if only one comparison is derivable) one single comparison.
Of course, the strongest information between ti and tj implied by a collection of additive
definitions and comparisons is not, necessarily, the strongest information available in the
problem; perhaps the multiplicative definitions imply something stronger. While we show
below that the arithmetical routines find the strongest information available to them, we
must note that they do not necessarily identify which information is the strongest. (For

1Here we ignore the minor but tedious complications introduced by equalities. Note also that comparisons
with 0 (ti ./ 0tj) are included in this count.
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example, the Fourier-Motzkin modules may produce many comparisons between ti and tj,
only two of which are relevant.) The database management routines in the Blackboard
identify which assertions are relevant, and discard the others. We can thus picture the
arithmetical modules as mindless “asserters” – they state as many true facts as they can,
without knowing what will be useful.

3.2 Additive Fourier-Motzkin Module

The Fourier-Motzkin algorithm ([28], [62]) is a quantifier-elimination procedure for the the-
ory of the structure 〈R, 0,+, <〉, that is, the real numbers as an additive ordered group.
Nothing changes essentially if we add to the language of that theory the constant 1 and
scalar multiplication by c, for each rational c. This procedure is frequently used to decide
problems in linear arithmetic by reducing sentences to a quantifier-free form. Our use of
the algorithm here is slightly different: for every pair of variables ti and tj, we will use
Fourier-Motzkin to eliminate all other variables, leaving us with a set of atomic comparisons
{ti ./ ctj}. We will argue that this procedure produces the strongest available information
about ti and tj.

While the implementation of this algorithm in Polya has small modifications for the
sake of efficiency, it is clearest to describe in its basic form. Let S be the union of the
given collections of additive term definitions and atomic comparisons, and suppose that we
are searching for comparisons between ti and tj. Let V = {0, . . . , n} denote the indices of
variables that have not yet been eliminated. The algorithm proceeds as follows:

• Rearrange all comparisons in S to have the form
∑

k∈V cktk ./ 0, where ./ ∈ {=,≥, >}.
Note that this eliminates the distinction between definitional and learned comparisons.

• Use equalities in S to eliminate variables by substitution. For any equality e :=∑
k∈V cktk = 0 ∈ S with some cl 6= 0, l /∈ {i, j}, remove e from S and replace ev-

ery occurrence of tl in S by
∑

k∈V \{l}−cktk. Remove l from V . This strictly decreases
the number of equalities in S.

• Use Fourier-Motzkin elimination to reduce the number of variables present. Pick l /∈
{i, j} and partition S into S+, S−, and S0, where S+ contains the comparisons in S in
which tl has a positive coefficient, S− those in which tl has a negative coefficient, and
S0 those in which tl does not appear. For every pair of comparisons e+ ∈ S+, e− ∈ S−,
find the scalar c such that tl is eliminated from e+ + ce−, and add this combination to
S0. Set S = S0 and repeat until all variables besides ti and tj have been eliminated.

• We are left with S = {citi + cjtj ./ 0}, a collection of (perhaps many) comparisons
between only ti and tj. Rearrange these again to have the form of atomic comparisons,
and assert each to the Blackboard.

Unfortunately, Fourier-Motzkin elimination is quite inefficient. Notice that in the third
step, we partition the set S into three subsets, and consider all pairs of elements from the
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first and second set. If |S−| ≈ |S+| and S0 is small, the size of the resulting set is on the
order of |S|2. In a problem with k inequalities in n variables, eliminating all but two of those
variables results in O(k2

n−2
) inequalities. To make matters worse, this elimination must be

performed
(
n
2

)
= n2−n

2
times for each round of the module.

Some unnecessary work can be avoided with a bit of cleverness. For instance, it is not
necessary to begin with the set S containing all inequalities in all variables for each i, j pair.
By choosing such i, j pairs in a diagonal order, the work done to eliminate variables between
ti and tj need not be repeated for i, j + 1. Similarly, once a variable ti has been compared
to each other variable in the problem, it can be eliminated entirely. This cleverness does
not reduce the computational complexity of the routine, but in practice yields noticeable
improvement.

The Fourier-Motzkin routine is least efficient when a pivot variable x appears frequently
in S with both positive and negative coefficients – it is in this situation that we see quadratic
increase in the size of S after eliminating x. Often, though, many of the new inequalities
produced are redundant. Syntactically identifying and filtering out identical inequalities is a
simple task; taking a step further, it is possible to coarsely filter redundant comparisons using
the simplex algorithm. As the simplex algorithm is quite efficient, doing so could at times
improve the performance of the Fourier-Motzkin algorithm at little cost. Polya does not
currently implement this technique, since the theoretical disadvantages of Fourier-Motzkin
rarely pose a problem in practice. However, doing so would be an important step in adapting
Polya to handle larger problems.

3.2.1 Proof of completeness

Here, we prove the claim that the algorithm described above produces the strongest derivable
comparisons between two variables.

Theorem 1. Let Γ = {sk ./k tk} be a set of comparisons with ./ ∈ {<,≤,=,≥, >}. Then
Γ |= ti ./ c · tj if and only if the Fourier-Motzkin elimination procedure on Γ produces a set
of comparisons that jointly imply ti ./ c · tj.

Proof. We rely on the fact that the Fourier-Motzkin procedure is sound and complete: that
is, if Γ is transformed to Γ′ by a set of Fourier-Motzkin steps, then Γ is satisfiable if and
only iff Γ′ is satisfiable.

By definition, Γ |= ti ./ c · tj iff Γ ∪ {ti 6./ c · tj} is unsatisfiable. Let Γ′ denote the result
of eliminating all variables besides ti and tj from Γ using FM steps. Clearly, (Γ ∪ {ti 6./
c · tj})′ = Γ′ ∪ {ti 6./ c · tj}, and so Γ ∪ {ti 6./ c · tj} is unsatisfiable iff Γ′ ∪ {ti 6./ c · tj} is
unsatisfiable. By definition again, this is the case iff Γ′ |= ti ./ c · tj.

3.3 Multiplicative Fourier-Motzkin Module

The Fourier-Motzkin multiplication module works analogously to the additive module. Given
comparisons ti ./ c · tj or ti ./ 0 and definitions of the form ti =

∏
j t
nj

kj
, the module aims
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to learn comparisons of the first two forms. The use of Fourier-Motzkin here is based on
the observation that the structure 〈R+, 1,×, <〉 is isomorphic to the structure 〈R, 0,+, <〉
under the map x 7→ log(x). With some translation, the usual procedure works to eliminate
variables in the multiplicative setting as well. In the multiplicative setting, however, several
new issues arise.

For one, the multiplicative module only makes use of terms ti which are known to be
strictly positive or strictly negative. In translating the Fourier-Motzkin routine to the mul-
tiplicative setting, it is necessary to (implicitly) take logarithms of terms, and of course the
logarithm function is only defined for positive reals. With a bit of bookkeeping, it is easy to
assume that all variables are positive and adjust the direction of the learned inequalities at
the end; however, doing so requires knowing whether the variables are positive or negative.
For this reason, the multiplicative routine is more effective in problems in which the signs of
many variables are known.

To ameliorate this problem, the multiplicative module executes a preprocessing stage
which tries to infer new sign information from the available data. For example, given the
definition t4 = t37t9t

2
11 and the sign information t4 > 0 and t9 < 0, one can infer t7 < 0. This

preprocessing does not perform any variable elimination itself, but increases the power of
the main Fourier-Motzkin step.

A second issue that arises is that the inequalities that are handled by the multiplicative
module are different from those handled by the additive module: terms can have a rational
coefficient. For example, we may have an inequality 3t22t5 > 1; here, the multiplicative
constant 3 would correspond to an additive term of log 3 in the additive procedure. This
difference makes it difficult to share code between the additive and multiplicative modules,
but the rational coefficients are easy to handle.

Finally, the multiplicative elimination may produce information that cannot be asserted
directly to the blackboard, such as a comparison t2i < 3t2j or t3i < 2t2j . In that case, we have
to pay careful attention to the signs of ti and tj and their relation to ±1 to determine which
facts of the form ti ./ c · tj can be inferred. We compute exact roots of rational numbers
when possible, so a comparison t2i < 9t2j translates to ti < 3tj when ti and tj are known
to be positive. As a last resort, faced with a comparison like t2i < 2t2j , we use a rational

approximation of
√

2 to try to salvage useful information.

3.4 Additive Geometric Module

We have seen above that, while the Fourier-Motzkin algorithm performs well in practice on
small problems, these modules are unlikely to scale well to larger problems. This inefficiency
is due, in large part, to the generation of many redundant comparisons in each step and to
the unavoidable repetition of many eliminations. While clever ordering and simplex filtering
can reduce this somewhat, they may not always provide sufficient improvement.

A more direct approach to overcoming these issues can be seen by interpreting the prob-
lem geometrically. A linear inequality c ≤

∑k
i=1 ci · ti determines a half-space in Rk+1; when

c = 0, as in the homogenized inequalities in our current problem, the defining hyperplane of
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the half-space contains the origin. A set of n homogeneous inequalities determines an un-
bounded pyramidal polyhedron in Rk with vertex at the origin, called a “polyhedral cone.”
(See, e.g., Figure 3.1a.) Equalities, represented as (k − 1)-dimensional hyperplanes, sim-
ply reduce the dimension of the polyhedron. The points inside this polyhedron represent
solutions to the inequalities.

We will make use of the following well-known theorem of computational geometry (see
[63, Section 1.1]):

Theorem 2. A set C ⊆ Rd is a finite intersection of closed linear halfspaces (an H-
polyhedron) if and only if it is a finitely generated conical combination of vectors (a V-
polyhedron).

Proof. We sketch the proof given by Ziegler; readers interested in the computational details
are referred to his text. Let P (A, z) = {x ∈ Rd : Ax ≤ z} for A ∈ Rm×d, z ∈ Rm. We read
P (A, 0) as the H-polyhedron generated by the homogeneous system of inequalities Ax ≤ 0.
Let cone(Y ) = {t1y1 + . . . + tnyn : ti ≥ 0} for Y = {y1, . . . ,yn} ⊆ Rd, the V-polyhedron
described by the set of vectors Y .

For the forward direction, let C = P (A, 0) ⊆ Rd be a given H-polyhedron. By definition
we have C = {x ∈ Rd : Ax ≤ 0} ∼= {(x,w) ∈ Rd+m : Ax ≤ w} ∩ {(x,w) ∈ Rd+m : w = 0}.
The left-hand side of the intersection is a V-polyhedron, and the intersection can be achieved
by successively intersecting hyperplanes of the form Hk = {y ∈ Rd+m : yk = 0}. It thus
suffices to prove that if C is a V-polyhedron, then so is C ∩ Hk. This can be shown by a
short (albeit finicky) algebraic computation.

For the backward direction, let C = cone(Y ) ⊆ Rd be a given V-polyhedron. Rewording
the definition, we see C = {x ∈ Rd : ∃t ∈ Rn s.t. t ≥ 0,x = Y t}. It is clear that
{(x, t) ∈ Rd+n : t ≥ 0,x = Y t} is an H-polyhedron. Furthermore, C is the projection of
this polyhedron to the subspace {(x, t) ∈ Rd+n : t = 0}. Another short computation shows
that projections of this sort preserve H-polyhedrons.

This theorem can be made more general, to handle nonhomogeneous inequalities; how-
ever, we need only this specific result. We will refer to the description as an intersection
of closed half-spaces as the H-representation of a polyhedron, and similarly to the conical
representation as the V-representation.

The problem of determining the strongest comparisons between ti and tj reduces to
finding the “extremal” ratios of the i-th and j-th coordinates of points inside the polyhedron.
The notion of extremality here is subtle – one must find two maximal and/or minimal ratios
relative to the signs of the ratios. (This closely parallels the discussion in Section 5.1, where
the two relevant comparisons between ti and tj might both be ≥, both be ≤, or be one
of each.) Luckily, understanding this extremality and finding these extremal ratios is fairly
straightforward to do, by projecting the V-representation of the polyhedron to the titj plane.
Given a nonempty list V of k+1-dimensional points describing the V-polyhedron, we proceed
as follows:

• For each 0 ≤ i < j ≤ k, let V ′ = {(vi, vj) : v̄ = (v0, . . . , vk) ∈ V }.
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(b) Projected to the xy plane, the polyhe-
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Figure 3.1: Variable elimination by geometric projection

• If V ′ = {(0, 0)}, then each point in the polyhedron has ti = tj = 0. Assert this to the
Blackboard.

• If all points in V ′ are collinear, then for each point in the polyhedron, we have ti = ctj
for some scalar c. Assert this to the Blackboard.

• If all points in V ′ fall on the same side of some line ti = ctj, then the entire polyhedron
must be contained in the half-spaces ti ./ c1tj, ti ./ c2tj, for ./ ∈ {≤,≥}. The scalars
c1 and c2 can be determined by finding the points in V ′ with the largest angle between
them, as in 3.1b. Assert these comparisons to the Blackboard.

• Otherwise, the polyhedron is not contained in any half-space determined by ti and tj.
There is nothing to be learned about these two variables.

Intuitively, this algorithm observes the “shadow” of the polyhedron on the titj plane
(Figure 3.1b). If the shadow covers the entire plane (case 4), there is no useful information;
otherwise, we see how to describe the 0-, 1-, or 2-dimensional shadow in terms of bounds on
ti and tj.

The computational difficulty, of course, is found in converting the H-polyhedron to its
V-representation. There are many ([8]) vertex enumeration algorithms to perform this con-
version, optimized for different situations. (Some handle degeneracies more gracefully than
others; some are sensitive to the size of the output rather than the size of the input.) Many
(at least implicitly) use Fourier-Motzkin elimination in a manner similar to our modules. As
this sort of geometric computation is common and well-studied, we have the luxury of relying
on highly-optimized implementations of these algorithms that avoid many of the potential
exponential increases in our Fourier-Motzkin modules. Additionally, since the conversion
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need only be performed once per round (rather than for each pair of variables), our concerns
about repeating calculations vanish.

We looked into a number of vertex-enumeration methods when designing this module.
Avis’ lrs package ([7]) and Fukuda’s cdd package ([29]) were promising candidates; other
techniques (e.g. [40]) were ruled out based on their theoretical efficiencies and sensitivities.
The reverse search algorithm for vertex enumeration is analogous to the well-known simplex
algorithm for solving linear programs. It reverses the standard pivoting operation in order to
trace paths through all vertices of the polyhedron. lrs implements this algorithm based on a
specific lexicographic pivoting rule. Alternatively, the double-description method of Motzkin
uses simple techniques to iteratively build the vertex set, adding one comparison at a time.
This technique, implemented by cdd, handles degeneracies more naturally than the standard
reverse search algorithm. While the two techniques showed similar performance on many
problems, lrs proved to be somewhat faster. It is certainly possible that reimplementing one
of these techniques with our specific purpose in mind could lead to an increase in speed; in
fact, to make the procedure proof-producing, such a reimplementation will likely be necessary.

Vertex enumeration algorithms typically assume convexity of the polyhedron: that is, all
inequalities are taken to be weak. As it is essential for us to distinguish between > and ≥, we
use a trick taken from Dutertre and de Moura [27, Section 5]. Namely, given a set of strict
inequalities {0 <

∑k
i=1 c

m
i · ti : 0 ≤ m ≤ n}, we introduce a new variable δ with constraints

0 ≤ δ and {δ ≤
∑k

i=1 c
m
i · ti : 0 ≤ m ≤ n}, and generate the corresponding polyhedron. If, in

the vertex representation, every vertex has a zero δ-coordinate, then the inequalities are only
satisfiable when δ = 0, which implies that the system with strict inequalities is unsatisfiable.
Otherwise, a comparison ti ./ c · tj is strict if and only if every vertex on the hyperplane
ti = c · tj has a zero δ coordinate, and weak otherwise.

The geometric addition module has exactly the same output as the Fourier-Motzkin
version; they only differ in their efficiency. Both run in similar (near-instantaneous) time
on most of the problems in our test suite. In fact, perhaps due to the increased overhead
of loading external software, the Fourier-Motzkin module is often a few milliseconds faster.
They begin to diverge on larger problems, particularly when the information provided to the
Blackboard is consistent. (See, for instance, Example 5.28 below. Both versions time out on
this example, but the geometric module makes it through more iterations.)

3.5 Multiplicative Geometric Module

As with the Fourier-Motzkin method, multiplicative comparisons 1 ≤
∏k

i=1 t
ei
i can be han-

dled in a similar manner, by restricting to terms with known sign information and taking
logarithms. Once again, there is a crucial difference from the additive setting: taking the
logarithm of a comparison c · ti · t−1j ./ 1 with c 6= 1, one is left with an irrational constant
log c, and the standard computational methods for vertex enumerations cannot perform exact
computations with these terms.

To handle this situation we introduce new variables to represent the logarithms of the
prime numbers occurring in these constant terms. Let p1, . . . , pl represent the prime factors
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of all constant coefficients in such a problem, and for each 1 ≤ i ≤ l, let qi be a variable
representing log pi. We can then rewrite each c · ti · t−1j ./ 1 as pd01 · . . . ·p

dl
l · ti · t

−1
j ./ 1. Taking

logarithms of all such inequalities produces a set of additive inequalities in k + l variables.
In order to find the strongest comparisons between ti and tj, we can no longer project

to the titj plane, but instead look at the titjq1 . . . ql hyperplane. The simple arithmetical
comparisons to find the two strongest comparisons are no longer applicable; we face the
harder problem of converting the vertex representation of a polyhedron to a half-space rep-
resentation. This problem is dual to the conversion in the opposite direction, and the same
computational packages are equipped to solve it. Experimentally, we have found cdd to be
faster than lrs for this procedure.

Unfortunately, this technique makes the efficiency of the multiplicative module sensitive
to the size and number of factors of the constant coefficients involved. A problem with many
unrelated large numbers can have significantly more prime number variables than IVars.
While we have not in practice seen this lead to a slowdown compared to the Fourier-Moztkin
routine, it does limit the module’s scalability. In principle, the vertex enumeration algorithms
do not require coefficients to be rational, and implementing these algorithms symbolically
would allow us to compute without this translation.
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Chapter 4

Additional Modules

The arithmetical modules form Polya’s computational core, and solve problems in the lan-
guage of RCF. However, Polya’s term structure and modular nature allow for more expres-
sivity than this: most importantly, we can define and reason with symbols denoting arbitrary
functions.

No interpretations are initially given to function symbols; the functions are simply as-
sumed to take values in R. (In fact, function symbols need not even have a fixed arity.
The minm function takes an arbitrary number of arguments, for example.) Users are allowed
(but not required) to introduce custom canonical forms for particular function symbols, to
overwrite the default form described in Section 2.1. They can additionally assert univer-
sal axioms that restrict the interpretation of a given function symbol, as described in the
following section.

Polya has built-in interpretations for a number of function symbols. Exponentials and
logarithms, minima and maxima, and absolute values are all handled natively. Individual
modules are equipped to reason specifically with each function symbol.

4.1 Axiom Instantiation Module

Users are allowed to define universally instantiated axioms. A valid axiom has the form
(∀x1, . . . , xn)ϕ. The quantifier free formula ϕ consists of literal comparisons ci · yi ./ cj · yj
joined by logical connectives ¬, ∧, ∨, and→. Variables {yi} not among the bound variables
{xi} are treated as constants. Upon definition, ϕ is immediately converted to conjunctive
normal form, its literals are canonized, and its conjuncts are split into separate axioms; thus
we may assume that each axiom has the clausal form (∀x1, . . . , xn) (

∨
yi ./ c · yj). Instanti-

ating an axiom of this form produces a clause that may be asserted to the Blackboard.

These uninstantiated axioms are stored in the axiom instantiation module. The main
routine of this module observes the term definitions present in the Blackboard and searches
for appropriate instantiations {xi 7→ c · tj} for each axiom. The notion of an “appropriate”
instantiation is rather difficult to pin down. Naively, one might try all possible mappings of
quantified variables to problem terms. It is easy to see, though, that this approach is too
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eager. Consider a problem with one variable a, and the axiom (∀x)(f(x) > 0). Iterated
applications of the naive approach will assert f(a) > 0, f(f(a)) > 0, f(f(f(a))) > 0, and so
on, which will help find a proof only in exceedingly rare situations. In fact, this approach can
also miss useful instantiations. Suppose f(a) < 1/2a with the axiom (∀x)(f(2x) > x). The
module will learn that f(2a) > a, f(2f(2a)) > f(2a), etc, but will never try the assignment
x 7→ 1/2a.

To avoid this, one might try to instantiate an axiom only with substitutions that map
terms in the axiom to terms defined in the Blackboard. But this approach is too cautious.
Suppose a < b and f(a) > f(b), with the axiom that (∀x, y)(x < y → f(x)−f(y) < 0). Since
the term f(a)− f(b) is not present in the Blackboard, the instantiation {x 7→ a, y 7→ b} will
fail; adding this term, though, would allow the arithmetical modules to derive a contradiction.
The “appropriate” approach to selecting instantiations must lie somewhere in between.

We find this middle ground by specifying for each axiom a set of trigger terms ([25]). An
assignment {xi 7→ c·tj} is appropriate when it maps each trigger term to a (constant multiple
of a) problem term. By default, the trigger terms are chosen to be the functional subterms
found in the axiom; however, for some axioms the user may wish to manually define the
trigger terms. The capacity to do so is present but limited in the current implementation,
and strengthening it is a potential improvement. Here we assume that the trigger terms are
chosen by the default rule.

We further require that each quantified variable occurs alone (up to a constant multi-
ple) as an argument to some function in the axiom. That is, neither (∀x, y)(f(x) < y) nor
(∀x, y)(f(xy) > 0) would be acceptable, but (∀x, y)(f(x, y) > 0) would be. This requirement
is not strictly necessary, but it drastically simplifies the unification procedure during instan-
tiation, and most reasonable axioms are expressible in this form. (Note that the first example
given is clearly inconsistent, and the second is more clearly written as (∀x)(f(x) > 0).)

Given an axiom (∀x1, . . . , xn)ϕ in CNF meeting these constraints, and a Blackboard B,
the axiom instantiation module updates B in a two-step process:

1. Unify the set of trigger terms of the axiom with the term definitions in B. If successful,
this process produces a list of assignments mapping x1, . . . , xn to scalar multiples of
terms in B.

2. For each assignment, substitute terms accordingly into ϕ and reduce ϕ to a clause of
the form

∨
ti ./ ci,j · tj. This may involve introducing new terms to B.

The unification routine depends heavily on a term-matching subroutine match, which we
describe first. Relative to a Blackboard B, match takes as input a term t whose atoms are
IVars, and returns a rational c and integer i such that B implies t = c · ti. We assume here
that t had a coefficient of 1, since any other coefficient could be factored into c.

• The simple case occurs when t is syntactically equal to a term already defined in B. In
this case, match returns the index of this term, along with the appropriate coefficient.

• Otherwise, match splits based on the type of t. If t is a function term, it can only
match other function terms with the same name and arity.
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– Recursively call match on each argument of t, to get t = f(c1 · ti1 , . . . , ck · tik). If
any of these calls to match fail, then fail.

– Otherwise, look at each term s = f(d1 · tj1 , . . . , dk · tjk) defined in B. If B implies
that cm · tim = dm · tjm for each 1 ≤ m ≤ k, then t = s; return the index of s with
the appropriate coefficient. Otherwise, fail.

• If t is an additive term, match must try to reduce t to a single IVar by substituting
equalities known in B. For an example, let t = 3t1 + 2t2 + 4t3, and suppose this is not
syntactically equal to any ti defined in B. If B contains the equalities t2 = 10t1 and
t3 = −t2, match should recognize that t = −17t1. This amounts to performing, for
each i, a sequence of Gaussian elimination steps on the set of additive equalities in B,
with the goal of finding t = c · ti. If this elimination succeeds for some i, return i along
with the appropriate coefficient. Otherwise, fail.

• If t is a multiplicative term, proceed analogously to the additive case: Gaussian elimi-
nation can be adapted to multiplication. Here we face a similar restriction to what we
saw in the multiplicative modules, namely that we can only perform this elimination
on variables known to be nonzero.

The unify routine takes as arguments a Blackboard B and a set of terms T . Let the word
UVar denote a free variable xi in T . unify returns a set of (partial) assignments {s1, . . . , sn},
where each si maps xi 7→ ci · tji for some collection of UVars {xi}.

• Pick a UVar u that occurs in T as the jth argument to some function term f : that is,
the term f(. . . , c · u, . . .) appears in T .

• Let F be the set of all function terms defined in B with the same name and arity as
f . For g ∈ F , let cg be a rational and tg be a problem term, such that c · cg · tg occurs
as an argument to g in the same place that c · u occurs as an argument to f .

• Let S denote the (currently empty) list of assignments to return.

– For each g ∈ F , cg · tg represents a potential assignment for u. Let O be the set
of terms in {t[cg · tg/u] : t ∈ T} that have remaining UVars, and C be the set of
those for which all UVars have been eliminated.

– If match fails for some term in C, this assignment is not feasible; continue to the
next g ∈ F . Otherwise, each term in C matches some problem term in B, and
this assignment is a good candidate.

– The unification process has ended if O is empty. In this case, add the assignment
u 7→ cg · tg to S. Otherwise, recursively call unify on O, and add u 7→ cg · tg to
each of the resulting assignments. Add these assignments to S.

• If S is empty, there is no variable assignment that unifies T with the terms in B; unify
has failed. Otherwise, return the set of plausible assignments S.
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Finally, the instantiate routine takes an axiom A = (∀x1, . . . , xn)ϕ with ϕ in CNF and
a Blackboard B, and asserts a number of clauses to B.

• Let S be the set of assignments obtained by unifying the trigger terms of A with B.
If this unification fails, there are no plausible instantiations of A.

• For each variable assignment in S:

– Perform the substitution on all literals of ϕ.

– For each literal s ./ c · t, try to match s and t to terms defined in B. If match
fails, add the term to B as a new term definition. The literal can now be put in
the form tj1 ./ c · tj2 .

– Now, ϕ is of the form
∨k
i=1 tji ./ c · tji . This is precisely a clause (Section 2.2.6)

that can be asserted to B.

4.2 Congruence closure module

Polya’s blackboard does not enforce that a function must have the same output given equal
inputs. This property is known as congruence closure. The well-known union-find data struc-
ture and its variations (e.g. [23], [47]) provides an efficient way to maintain these equalities
in a database. This maintenance is not a bottleneck for our algorithm, though, and a more
naive approach works seamlessly. Polya runs a congruence closure module that searches for
pairs of problem terms with the same function symbol and arity. If the Blackboard implies
that each corresponding pair of arguments are equal, the module asserts that the terms
are themselves equal. The runtime of this module is negligible compared to that of the
arithmetical modules, so implementing a more structured method is not a priority.

4.3 nth Root Module

Handling terms such as x1/2 can be difficult, as this expression is undefined when x < 0. The
canonization method must take care to avoid unsound simplifications such as x1/2 ·x1/2 → x.
Nevertheless, when x > 0 is known, many inferences can be made about x1/2, and these
inferences can be vital for completing a proof. It is convenient to treat fractional exponents
(·)1/n as instances of a function term root(n, ·). Reasoning with these functions can largely be
handled by the axiom instantiation module, such that for even n, inferences about root(n, t)
will be made only if t is known to be positive.

The nth root module guarantees that the proper axioms for a given problem have been
added to the Blackboard. The module finds a list of n such that root(n, s) appears as some
problem term, and axiomatizes the behavior of root(n, ·) appropriately for each n. If n is
even, the axioms

(∀x) (x ≥ 0→ root(n, x)n = x)

(∀x) (x ≥ 0→ root(n, x) ≥ 0)
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are added to the instantiation module. If n is odd, the axiom

(∀x) (root(n, x)n = x)

is added. These conditional identities provide a sound way of reasoning with fractional
exponents.

4.4 Exponential and Logarithm Module

Without computing any exact or approximate values, we can describe the exponential func-
tion exp(x) = ex as a positive, strictly increasing function defined on all of R. The module
which interprets this function thus adds the following axioms to the instantiation module:

(∀x) (exp(x) > 0)

(∀x) (exp(x) > x)

(∀x) (x ≥ 0→ exp(x) ≥ 1)

(∀x) (x > 0→ exp(x) > 1)

(∀x, y) (x ≤ y → exp(x) ≤ exp(y))

(∀x, y) (x < y → exp(x) < exp(y))

(∀x, y) (x 6= y → exp(x) 6= exp(y))

Additionally, the exponential function satisfies the identities

exp(c · x) = exp(x)c

exp(x1 + . . .+ xn) = exp(x1) · . . . · exp(xn)

for scalar c. These cannot be axiomatized in a way that the instantiation module will
recognize, so the exponential module must search for and add these identities itself.

The natural logarithm function log is dual to exp and is axiomatized similarly. However,
since log is only defined on the positive reals, we must condition our axioms as we did in
the nth root module.

(∀x) (x ≥ 1→ log(x) ≥ 0)

(∀x) (x > 1→ log(x) > 0)

(∀x) (x > 0→ log(x) < x)

(∀x, y) (0 < x ∧ x < y → log(x) < log(y))

(∀x, y) (0 < x ∧ x ≤ y → log(x) ≤ log(y))

(∀x, y) (0 < x ∧ 0 ≤ y ∧ x 6= y → log(x) 6= log(y))

We also have the identities

log(xc) = c · log(x)

log(x1 · . . . · xn) = log(x1) + . . .+ log(xn)

for scalar c, provided x, x1, . . . , xn are all positive.
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4.5 Minimum and Maximum Module

The minimum function minm(x1, . . . , xk) is interpreted in the standard way: it returns the
value of one of its arguments xi such that xi ≤ xj for all 1 ≤ j ≤ k. This function presents
an interesting challenge to Polya, since its arity is not fixed; this makes it nearly impossible
to describe to the general axiom instantiation module. A specialized module allows us to
interpret it.

The minimum module searches a Blackboard B for terms t := minm(c1 · t1, . . . , ck · tk).
It immediately asserts that t ≤ ci · ti for 1 ≤ i ≤ k. As it is useful to find as much sign
information as possible for the multiplicative module, the minimum module also checks for
./ ∈ {<,≤,≥, >} if ci ./ 0 for all i; if so, it asserts that t ./ 0 as well.

The module must also account for the fact that t = minm(c1 · t1, . . . , ck · tk) is the smallest
number less than or equal to all of its arguments. If for some constant d and problem term
s we have s ≤ d · cj · tj for all 1 ≤ j ≤ k, then we also know that s ≤ d · t. The minimum
module uses the Blackboard’s methods for finding implied coefficient ranges (Section 2.2.4)
to find, for each problem term s, an interval [a, b] for which b ∈ [a, b] implies s ≤ d · cj · tj
holds for all 1 ≤ j ≤ k. If such an interval exists, the module asserts that s ≤ a · t and
s ≤ b · t. (In fact, the module may also determine that this inequality should be strict.)

Conveniently, we do not need a separate module to handle maxima. Polya defines the
maxm function to be the dual of minm: maxm(c1 · t1, . . . , ck · tk) = −minm(−c1 · t1, . . . ,−ck · tk).

4.6 Absolute Value Module

Finally, Polya has a specialized module for interpreting the absolute value function. Basic
properties of abs are handled by asserting the following axioms to the function module:

(∀x)(abs(x) ≥ 0)

(∀x)(abs(x) ≥ x)

(∀x)(abs(x) ≥ −x)

(∀x)(x ≥ 0→ abs(x) = x)

(∀x)(x ≤ 0→ abs(x) = −x).

It is not possible to axiomatize the triangle inequality in full generality, though, as the
form of such an axiom would not meet the restrictions on the instantiation module. The
purpose of the absolute value module is to find and perform promising instantiations of the
triangle inequality. Specifically, the module adds comparisons of the forms

abs(c1t1 + . . .+ cktk) ≤ abs(c1t1) + . . .+ abs(cktk)

abs(c1t1 + . . .+ cktk) ≥ abs(cjtj)− (abs(c1t1) + . . .+ abs(cktk)) .

It would be unproductive to add these comparisons indiscriminately. Doing so would
necessitate creating new problem terms abs(cjtj) for each argument, if these terms were not
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already present. The absolute value module takes a more subtle approach, only learning
these comparisons if for each j, either abs(cjtj) is already a problem term, or the sign of j is
known (in which case abs(cjtj) is replaced with ±cjtj as appropriate). This approach does
not seem to miss any inferences that the indiscriminate approach would capture, since the
comparisons learned will only be useful if something is known about each absolute value.
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Chapter 5

Performance and Examples

We aim to capture with our system a class of inferences that could be described as “natural”
or “intuitive,” that often come up in everyday proofs. For various reasons, Polya seems
ill-suited to attack large-scale problems in hundreds or thousands of variables, such as those
found in industrial SMT applications. Smaller, heterogeneous problems, such as the example
used for motivation in Section 1.4, make for more appropriate targets. These problems arise
frequently in mathematics, both formal and informal, and are often surprisingly difficult for
automated techniques to solve.

In the following sections, we highlight some of the noteworthy inferences that Polya
proves, and compare its performance with that of other automated provers. Not wishing
to mislead, we also discuss some of the system’s shortcomings. The results indicate that
Polya fills a previously unfilled niche in the world of automated provers. We are able to
prove many inferences – including a number found in real proofs and formalizations – that
no other systems manage to solve. Given its significant shortcomings, we certainly do not
expect Polya to replace these established systems, but it seems very promising as a tool to
be used alongside them.

The examples seen here are a small selection of our test suite. Further examples can be
found in the examples folder of the Polya distribution.

5.1 Comparisons With Other Systems

Before seeing how Polya performs in comparison to other automated provers, it is important
to identify the competition. Automated arithmetic outside of TRCF (and even inside it –
see the discussion of cylindrical algebraic decomposition in Section 1.2) is a difficult domain,
and there are few systems that are strong in this area. A few promising candidates are Z3
([24]), an SMT solver developed at Microsoft Research, and MetiTarski ([1]), a resolution
theorem prover by Lawrence Paulson.

Z3 is a highly optimized SMT system that implements CAD as its nonlinear arithmetic
theory solver. It performs successfully on a large class of problems, and has won numerous
theorem-proving competitions. When restricted to problems involving linear arithmetic and
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axioms for function symbols, the behavior of Z3 and Polya is similar, although Z3 is vastly
more efficient. As the examples below show, Polya’s advantages show up in problems that
combine multiplicative properties with either linear arithmetic or axioms. In particular, Z3
procedures for handling nonlinear problems do not incorporate axioms for function symbols.
While CAD performs optimally in problems with two variables, the procedure’s flattening
and projection steps get bogged down in problems with three or more variables and larger
exponents. It is on problems like this, such as Example 5.4 below, on which Polya’s arith-
metical capacity shines.

MetiTarski also relies on a CAD elimination procedure, using the QEPCAD implemen-
tation in combination with a resolution prover. It targets theorems that involve specific
real-valued operators, such as exp, log, and trigonometric functions, by using symbolic ap-
proximations. We found that, while MetiTarski was fairly successful on our purely arith-
metical examples, it had similar weaknesses to Z3. It did not perform well on examples with
interpreted functions, including the examples that involve tight inferences about exp.

We also verified a number of the following examples in Isabelle, trying to use Isabelle’s
automated tools as much as possible. These include “auto,” an internal tableau theorem
prover which also invokes a simplifier and arithmetic reasoning methods, and Sledgehammer
([43], [13]), which heuristically selects a body of facts from the local context and background
library, and exports it to various provers. Sledgehammer successfully proved most of the
same theorems as Z3 (which is not surprising, as Z3 is one of the provers it uses). The
“auto” method only succeeded on the simplest examples.

Finally, ACL2 has support for nonlinear reasoning (see e.g. [39]). The method used there
is locally somewhat similar to ours, although it lacks the same global guidance. Preliminarily,
ACL2 appears to solve some, but not all, of the problems in our example suite, and requires
somewhat more input to do so. We hope to have a more detailed comparison between Polya
and ACL2 in the future.

5.2 Polya’s Successes

Here we walk through a number of examples that we have chosen to illustrate Polya’s
strengths. We indicate how Z3 and Isabelle’s methods perform in comparison.

To start with, Polya handles inferences involving linear real inequalities, which are verified
automatically by many interactive theorem proving systems. It can also handle purely
multiplicative inequalities such as

0 < u < v < 1, 2 ≤ x ≤ y ⇒ 2u2x < vy2, (5.1)

which are not often handled automatically. It can solve problems that combine the two, like
these:

x > 1 ⇒ (1 + y2)x > 1 + y2 (5.2)

0 < x < 1 ⇒ 1/(1− x) > 1/(1− x2) (5.3)

0 < u, u < v, 0 < z, z + 1 < w ⇒ (u+ v + z)3 < (u+ v + w)5 (5.4)
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It also handles inferences that combine such reasoning with axiomatic properties of functions,
such as:

(∀x. f(x) ≤ 1), u < v, 0 < w ⇒ u+ w · f(x) < v + w (5.5)

(∀x, y. x ≤ y → f(x) ≤ f(y)), u < v, x < y ⇒ u+ f(x) < v + f(y) (5.6)

Isabelle’s auto and Sledgehammer fail on all of these but (5.5) and (5.6), which are proved
by resolution theorem provers. Sledgehammer can verify more complicated variants of (5.5)
and (5.6) by sending them to Z3, but fails on only slightly altered examples, such as:

(∀x. f(x) ≤ 2), u < v, 0 < w ⇒ u+ w · (f(x)− 1) < v + w (5.7)

(∀x, y. x ≤ y → f(x) ≤ f(y)), u < v, 1 < v, x ≤ y ⇒
u+ f(x) ≤ v2 + f(y)

(5.8)

(∀x, y. x ≤ y → f(x) ≤ f(y)), u < v, 1 < w, 2 < s,

(w + s)/3 < v, x ≤ y ⇒ u+ f(x) ≤ v2 + f(y)
(5.9)

Z3 gets most of these when called directly, but also fails on (5.8) and (5.9). Moreover, when
handling nonlinear equations, Z3 “flattens” polynomials, which makes a problem like (5.4)
extremely difficult. It takes Z3 a couple of minutes when the exponents 3 and 5 in that
problem are replaced by 9 and 19, respectively. Polya verifies all of these problems in a
fraction of a second, and is insensitive to the exponents in (5.4). It is also unfazed if any of
the variables above are replaced by more complex terms.

Polya has built-in knowledge about many functions, such as exp and log, and verifies
examples such as

z > exp(x), w > exp(y) ⇒ z3 · w2 > exp(3x+ 2y) (5.10)

a > 1, c > 0, log(b2) > 4, log(c) > 1, b 6= 0 ⇒ log(a · b2 · c3) > 7 (5.11)

While Z3 sometimes succeeds on these types of examples, it needs to have the appropriate
properties of exp or log described to it. It does not get either of the above.

Polya has no problem with examples such as

0 < x < y, u < v ⇒ 2u+ exp(1 + x+ x4) < 2v + exp(1 + y + y4), (5.12)

mentioned in the introduction. Sledgehammer verifies this using resolution, and slightly more
complicated examples by calling Z3 with the monotonicity of exp. Sledgehammer restricts
Z3 to linear arithmetic so that it can reconstruct proofs in Isabelle, so to verify (5.12) it
provides Z3 with the monotonicity of the power function as well. When called directly on
this problem with this same information, however, Z3 resorts to nonlinear mode, and fails.

Sledgehammer fails on an example that arose in connection with a formalization of the
Prime Number Theorem, discussed in [3]:

0 ≤ n, n < (K/2)x, 0 < C, 0 < ε < 1 ⇒
(

1 +
ε

3(C + 3)

)
· n < Kx (5.13)
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Z3 verifies it when called directly. Sledgehammer also fails on these [4]:

0 < x < y ⇒ (1 + x2)/(2 + y)17 < (1 + y2)/(2 + x)10 (5.14)

0 < x < y ⇒ (1 + x2)/(2 + exp(y)) ≥ (2 + y2)/(1 + exp(x)) . (5.15)

Z3 gets (5.14) but not (5.15). Neither Sledgehammer nor Z3 get these:

(∀x, y. f(x+ y) = f(x)f(y)), a > 2, b > 2 ⇒ f(a+ b) > 4 (5.16)

(∀x, y. f(x+ y) = f(x)f(y)), a+ b > 2, c+ d > 2 ⇒ f(a+ b+ c+ d) > 4 (5.17)

Polya verifies all of the above easily.
The following problem was once raised on the Isabelle mailing list:

x > 0, y > 0, y < 1 ⇒ (x+ y) > xy . (5.18)

This inference is verified by Z3 as well as Sledgehammer, but both fail when x and y in the
conclusion are replaced by x1500 and y1500, respectively. Polya is insensitive to the exponent.

Let us consider two examples that have come up in recent Isabelle formalizations by
Avigad ([5]). Billingsley [12, page 334] shows that if f is any function from a measure space
to the real numbers, the set of continuity points of f is Borel. Formalizing the proof involved
verifying the following inequality:

i ≥ 0, |f(y)− f(x)| < 1/(2(i+ 1)),

|f(z)− f(y)| < 1/(2(i+ 1)) ⇒ |f(x)− f(y)| < 1/(i+ 1) . (5.19)

Sledgehammer and Z3 fail on this, while Polya verifies it easily.
The second example involves the construction of a sequence f(m) in an interval (a, b)

with the property that for every m > 0, f(m) < a+ (b− a)/m. The proof required showing
that f(m) approaches a from the right, in the sense that for every x > a, f(m) < x for m
sufficiently large. A little calculation shows that m ≥ (b − a)/(x − a) is sufficient. We can
implicitly restrict the domain of f to the integers by considering only arguments dme; thus
the required inference is

(∀m. m > 0→ f(dme) < a+ (b− a)/dme),
a < b, x > a, m ≥ (b− a)/(x− a) ⇒ f(dme) < x . (5.20)

Sledgehammer and Z3 do not capture this inference, and the Isabelle formalization was
tedious. Polya verifies it immediately using only the information that dxe ≥ x for every x.

Finally, Polya succeeds in verifying examples that involve combinations of interpreted
functions:

minm(exp(3x), exp(9x2 − 2), log(x)) > 1, x > 0 ⇒ x > 1 (5.21)

y > maxm(2, 3x), x > 0 ⇒ exp(4y − 3x) > exp(6) (5.22)

x 6= 0, y > 0, log(|x|+ 2|y|) > 5, log(|y|) <
√

2 ⇒ log(|x|) > 2 (5.23)

x 6= 0, y > 0, log(|x|+ 2|y|) > 5, log(|y|) <
√

2 ⇒ log(exp(x)) > exp(−2) (5.24)
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5.3 Polya’s Shortcomings

Of course, Polya fails on wide classes of problems where other methods succeed. To begin
with, it is much less efficient than the best linear solvers, and so should not be expected
to scale to large industrial problems of this type. While there are many optimizations that
could be made to Polya, we hold little hope of ever competing with established linear solvers;
at its core, Polya is designed for nonlinear, heterogeneous problems.

Recall that the multiplicative module only takes advantage of equations where the signs
of all terms are known. When called directly, the module fails to make the trivial inference

x > 0, y < z ⇒ xy < xz . (5.25)

The preprocessing step described in Section 3.3 enables Polya to prove this inference.
But this preprocessing is not robust, and minor adjustments cause Polya to fail:

x > 0, xyz < 0, xw > 0 ⇒ w > yz (5.26)

Problems of this sort are easily solved given a mechanism for splitting on the signs of w,
y and z. See Section 6.3 below for a discussion of this.

Another shortcoming, in contrast to methods which begin by flattening polynomials, is
that Polya does not, a priori, make use of distributivity at all, beyond the distributivity of
multiplication by a rational constant over addition. Any reasonable theorem prover for the
theory of real closed fields can easily establish

x2 + 2x+ 1 ≥ 0, (5.27)

which can also be obtained simply by writing the left-hand side as (x+ 1)2. But, as pointed
out by Avigad and Friedman [4], the method implemented by Polya is, in fact, nontermi-
nating on this example. Assuming the negation, Polya will learn that x2 ≥ 0, implying
2x + 1 ≤ 0 and thus x ≤ −1/2. This implies x2 ≥ 1/4, beginning a cycle that will find
progressively tighter bounds for x around −1.

Finally, there are examples on which the arithmetical modules reach their computational
limits. We have seen this happen particularly on large, satisfiable problems and problems
involving complicated rationals, but the unfortunate behavior is not limited to these cases.
Consider the following, taken from Solovyev’s work on the Flyspeck project ([57]):

4 ≤ xi ≤ 6.3504 ⇒
x1x4(−x1 + x2 + x3 − x4 + x5 + x6) + x2x5(x1 − x2 + x3 + x4 − x5 + x6)

+ x3x6(x1 + x2 − x3 + x4 + x5 +−x6)− x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6 > 0

(5.28)

As the arithmetical modules search for a contradiction, they derive more and more com-
parisons with large (fractional) coefficients. Both the Fourier-Motzkin and the geometric
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elimination routines are prone to timing out on these problems; this appears to be the
system’s main bottleneck.

Our method is known and intended to be incomplete, and there will always be problems
on which it does not succeed. Many of these shortcomings are not worrisome – they are
problems better left to other techniques. Nonetheless, there are improvements that could be
made to Polya to help it handle difficult problems like these. We look into some of these
improvements in the final chapter.

48



Chapter 6

Conclusions and Future Work

As we have seen in the last chapter, Polya is currently able to prove many interesting
theorems. Of course, there is always room to improve. Most modifications to our system
can be put into one of two categories: changes that improve efficiency, and changes that
increase the scope of problems that we can solve. We discuss both of these below.

6.1 Producing Proofs

Perhaps the most important improvement, though, is to extend Polya to produce proof cer-
tificates; this does not fit cleanly into either category. (In fact, a proof-producing version
would certainly be slower than the current implementation.) Producing certificates is ex-
tremely desirable for integration into interactive theorem provers. What’s more, doing so
would help ensure the correctness of our implementation. We have found and fixed countless
bugs over the course of development, and there are doubtlessly many more lurking; with
certified results, our code becomes much more trustworthy.

Because of the simple nature of Polya’s inferences, doing so should not require huge
amounts of extra overhead. It is an easy matter to trace the history of any comparison
asserted to a Blackboard. The comparison must come either from the user – as a hypothesis
to the problem – or from a computational module. The arithmetic modules create compar-
isons by taking linear combinations of others, and so the source of a new comparison can be
represented by its two predecessors and a coefficient (exponent) of combination. The other
modules behave similarly; for instance, comparisons produced by the axiom instantiation
module can be traced to an axiom (assumed or provable) and a specific instantiation.

Lean, a new proof assistant under development by Leonardo de Moura, is a promising
environment in which to integrate Polya. Instead of having an “interactive core” with mech-
anized tactics added on, Lean integrates powerful automated techniques from the bottom
up. It can be seen as an interactive proof assistant with many automated tactics, or as an
automated tool that produces proofs based on a verified library. Using a scripting language
called Lua, Lean users will be able to design new tactics of their own on top of the built-in
capabilities.
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We envisage Polya running as normal, tracking this historical structure for every asser-
tion. If and when the system derives a contradiction, identifying its source is just a matter
of looking down all branches of the tree; all the necessary information to construct a formal
proof is present. This trace can be given to a proof-producing algorithm – say, a Lua tac-
tic for Lean – that will reconstruct this proof. When Lean and its libraries are sufficiently
robust, we plan to implement exactly this process.

6.2 Improving Efficiency

The current Python implementation of Polya is a prototype, and much of the code could be
further optimized. We would also expect to see great increases in efficiency by implementing
the system in another programming language such as OCaml or C++. These optimizations
are not of theoretical interest, though, and so we focus here on more substantial improve-
ments.

In their current designs, the arithmetical modules start from scratch each time they are
run. One can imagine incremental ways of running both the Fourier-Motzkin and geometric
elimination routines, so that little work is repeated. In the Fourier-Motzkin modules, this
would involve storing the sets of inequalities generated at each stage and extending the
technique to begin partway through. In the geometric modules, this would involve generating
an initial polyhedron and intersecting it with new half-planes as new information is added.
As doing this does not seem to be a feature of cdd or lrs, adding this capability to Polya
would likely involve implementing our own vertex enumeration method.

An original implementation of a vertex enumeration algorithm would allow for other
improvements as well. The “hacks” we use to account for strict inequalities and irrational
coefficients (see Sections 3.4 and 3.5) could be avoided by handling these situations naturally.
Furthermore, the problems Polya sends to its geometric tools are purely homogeneous, yet
cdd and lrs are designed to handle problems with constants; it is possible that restricting
the algorithms to this class of problems could result in greater efficiency.

We saw the arithmetical modules reach their computational limits in Example 5.28 above.
Improving the modules as described might enable them to finish this example, but one could
always construct larger examples with more variables and more complicated coefficients.
Notably, the kind of slowdown we see in this example happens most often on “satisfiable”
problems – that is, when no amount of computation would allow Polya to derive a contradic-
tion.1 This suggests running Polya in parallel with a model-search technique. On satisfiable
problems, successful completion of the model search would terminate Polya before these
slowdowns could occur.

Like the arithmetical modules, the hierarchical data storage in the Blackboard is also
highly nonincremental. In order to properly and efficiently implement case-splitting and
backtracking, it will be necessary to better track the cascading effects of asserting a new

1We point out a subtlety in this notion of satisfiability: a problem unsatisfiable over R may not appear
contradictory to Polya, if deriving a contradiction necessarily involves applying distributivity. Polya searches
for unsatisfiability over T[Q].
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comparison. (Currently, the only way to “undo” an assertion is to store a copy of the
Blackboard before the assertion is made, and revert to that.) And despite maintaining a
hierarchical structure, the Blackboard still stores plenty of redundant information, leading
to inefficiencies in both storage space and computation time.

Ultimately, though, the current and unoptimized version of Polya runs quite well on
realistic examples. While we naturally expect computation times to increase in a proof-
producing version, improving efficiency seems less of an imminent need than widening the
class of problems Polya can solve.

6.3 Solving More Problems

Recall that on problems like Example 5.26 above, the multiplicative arithmetic modules
fail due to a lack of sign information. We can get around this limitation to some extent
by preprocessing multiplicative terms. But in general, the principled way to handle these
situations is with case splits. If Polya is able to derive a contradiction assuming each of
y > 0, y = 0, and y < 0, then it can conclude that the problem is unsatisfiable. And
assuming any one of these will allow the multiplicative module to do its job on Example
5.26. Case splits on the signs of terms seem especially fruitful in our framework, given the
multiplicative modules’ limitations. But in other cases it may be helpful to split on x < c ·y,
x = c · y, and x > c · y for arbitrary terms x and y and coefficient c – perhaps one of these
assumptions might satisfy the hypothesis of an axiom, say.

The current implementation of Polya is able perform very rudimentary case splitting
when the modules cannot derive any new comparisons. Variables are ranked based on the
frequency with which they appear in multiplicative terms, and case splits are made in this
order up to a fixed depth d. If the system is still unable to derive a contradiction after making
d assumptions, it will revert to a previous state and try to split on different variables.

Without efficient methods to incrementally update and backtrack in the Blackboard, this
method of case splitting is extremely costly. It will often be the case that assuming y > 0 will
result in the same conclusions regardless of whether x < 0 or x > 0 was assumed before, but
our current implementation cannot recognize this or avoid recalculating these conclusions.

More generally, an efficient case-splitting routine would involve conflict-driven clause
learning (CDCL). This technique, used extensively by DPLL-based SAT solvers, involves
finding “core conflicts” when a case split leads to a contradiction and using this information
in future assignments. For example, a case split that chooses to assign w = 0, x > 0,
y > 0, and z < 0 may derive a contradiction that depends only on the assumptions about w
and z; knowing this restricts the space of feasible assignments that the system must check.
Implementing CDCL is, of course, closely related to the incrementality concerns discussed
above.

We have also considered improvements to Polya that are unrelated to case-splitting. One
glaring weakness of the system is its inability to understand distributivity, as illustrated in
Example 5.27. This limitation comes from the interplay between the additive and multi-
plicative arithmetical modules, but nothing prevents another module from stepping in: we
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imagine a “distribution” module, which heuristically distributes or factors terms and adds
identities as appropriate.

Finally, mathematicians frequently need to prove inequalities involving higher-order op-
erators: combinatorialists may seek to bound finite sums, or analysts integrals. The heuristic
techniques of Polya could be extended to reason with these types of terms as well. For in-
stance, if f is known to be positive and n < m are integers, then

∑n
i=1 f(i) <

∑m
i=1 f(i),

and
∫ m
n
f(x)dx > 0. Handling these sorts of operators could be very fruitful.

6.4 Concluding Remarks

Incomplete heuristic procedures for automated theorem proving are often shunned in favor
of complete but inefficient tactics. By describing a heuristic procedure that can outperform
established methods on natural examples, we hope to convince some readers to do otherwise.
Looking at various sources – the Flyspeck project, formalizations presented at conferences
on interactive theorem proving, and automated theorem proving competitions, to name just
a few – it is clear that on complicated domains such as TRCF , there is no single “correct”
automated tool. Heuristic methods may be more modular, take fewer resources to run, cover
broader domains of problems, or more easily produce (humanly comprehensible) proofs. For
this they deserve to stand alongside decision procedures in the lineup of tools available to
mathematicians.

Polya has a number of features that compare favorably to those of other procedures.
Its modular structure allows for enormous flexibility and extensibility. Modularity, while
often venerated in computer science, is perhaps neglected in mathematics. Proofs that are
“pure” to one discipline, or that cleanly separate arguments using technologies from different
subfields, have both mathematical and philosophical upsides ([2], [26]). Polya explicitly
enforces this kind of separation. Improvements in any one “subfield” – say, developing a
more efficient routine for linear arithmetic – can be seamlessly incorporated without affecting
any other parts. And similarly, extending its capabilities to capture new types of problems
does not weaken its performance on old types.

The virtue of producing comprehensible proofs is particularly intriguing. Some math-
ematicians and philosophers of math have argued against formalized mathematics, on the
grounds that the real purpose of mathematical proof is to increase mathematical understand-
ing. Formalizing already-known proofs, they argue, does not produce extra insight, and often
even obscures what was in the original proof. Reliance on automated techniques can rein-
force these claims: knowing by a complicated CAD computation that a certain statement
holds in TRCF does not explain why the statement is true. In fact, this line of thought is
partly why the Mizar system supports very little automation.

Of course, one can argue in the other direction as well. A formal proof has virtues other
than explanatory power; for one, it instills a high degree of confidence in the correctness of its
result. And the formalization process can lead to insights and subtleties that were missed in
the traditional proof, such as happened in the Flyspeck project. Perhaps most compellingly,
the mathematical work involved in designing these formalization tools is noteworthy in its
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own right. The desire for proof assistants and automated techniques has spurred significant
developments in algorithms, logic, and other areas of math and computer science, and in-
vestigating when and why these techniques fail can provide great insight into the questions
asked.

Still, though, the naysayers’ critique has some weight to it: heavy automation can some-
times obscure the more general reasoning behind a proof, and this can make it difficult to
generalize results or understand why certain cases fail. Techniques that produce natural,
comprehensible derivations may lessen these worries. By outputting a proof that a human
can read and understand, perhaps these techniques increase the explanatory power of their
results and of the proofs that rely on them. In the case of TRCF , proofs via CAD and similar
methods are complicated, indirect, and have many extraneous steps; in comparison, Polya’s
proofs can be streamlined and simple. One can see directly the connections between the hy-
potheses and the conclusion, and try to infer from them generalizations or interesting special
cases. A failure of Polya to find a proof can explain as well: maybe the problem depends
inherently on the distributivity law, or on a property of a function that was not axiomatized.
These musings indicate that there are philosophical virtues to these proofs beyond simply
their correctness, and that these epistemic concerns ought to be explored.
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