THE ART OF FORMAL PROOF

ROBERT Y. LEWIS

1. INTRODUCTION

In my first courses as a mathematics major I was amazed at how certain my
professors, my TAs, and some of my classmates were about their proofs—and
dismayed, sometimes, at how uncertain I was about my own. When phrases like
“it follows that” and “clearly” appeared in lecture, there was no doubt that the
conclusions did follow, even if I couldn’t quite fit the pieces together in real time.
When I wrote them on problem sets, my bluffs were sometimes caught by the grader,
but just as often they passed by undetected. I was succeeding in my courses but
that success felt fraudulent.

With time, the sense that I was bluffing diminished, but never went away entirely.
Through repetition and osmosis, the rules of the “proof game” took on implicit form.
It wasn’t until after I finished my bachelors degree that I learned these rules could
be made explicit.

2. FORMAL LOGIC

Logicians draw a distinction between traditional proofs in natural language (the
vast majority of proofs in mathematics) and formal proofs, those written following
explicit symbolic patterns. A formal logical system combines a language for forming
mathematical statements with a collection of derivation rules, patterns that allow
a logician to establish judgments of the form “sentence ¢ is derivable from a set
of hypotheses T' if sentences ¥, and 1 are derivable from I'.” Critically, these
derivation rules are formal, in that they depend on the form of the involved sentences
and not their meaning.

Propositional logic is an example of such a system. Start with an infinite set of
symbols P = {p,q,r,...}; we call these propositional letters, and think of them as
representing true/false statements, although that already gets us dangerously close
to “meaning.” A formula of propositional logic is either
a propositional letter x € P;
the negation - of a formula ¢;
the conjunction (“and”) ¢ A4 of formulas ¢ and ;
the disjunction (“or”) ¢ v ¢ of formulas ¢ and #; or
the implication ¢ — ¢ of formulas ¢ and .

There is a natural tree structure to formulas of this language, in which the root
nodes are propositional letters (Figure [1f).

Let ¢ and 1 denote formulas and I" denote a set of formulas; we use the notation
I' + ¢ to denote “p is derivable from the set of hypotheses I'.” While the full list of
derivation rules for propositional logic [II, [13] is too long for this essay, we include a
few examples here.



2 ROBERT Y. LEWIS

A

I\
/

q

5 — ]

FIGURE 1. The propositional formula p A (¢ — —r) represented as a tree.

D) TrpaypifTHpand T+,
(2) Tro—-yifTu{p}r.
3) Troifpel.

The symbolic representation might obscure the meanings of these rules, but in
fact, they correspond to familiar patterns of reasoning.

(1) To prove an “and” statement, it suffices to prove both sides individually.

(2) To prove an implication, it suffices to suppose the left hand side and prove
the right hand side.

(3) If you have supposed a statement, you can prove it.

Imagine starting with a complex formula ¢ and repeatedly applying these deriva-
tion rules until no goals remain. This sequence (or really, this tree) of rule applica-
tions is a formal proof of ¢. It may take sweat and tears to find the right sequence
of rule applications—after all, these proof rules insist that you check every last
detail! But if you present someone with such a sequence, it should be mechanical
for them to check that the rules are applied correctly.

The study of first order or predicate logic adds a number of complications to this
picture of propositional logic, but the core ideas are the same. Start with a formal
grammar for sentences (including “for all” and “exists” quantifiers); add a long list of
derivation rules that echo how we informally reason. Searching for proofs of formulas
in this logic becomes even harder, but checking proofs remains a straightforward
mechanical procedure. First order set theory [2] proffers a language and deduction
system strong enough to encompass most of what research mathematicians do today.

And here we see a disconnect: mathematicians, as a rule, do not write formal
proofs in first order set theory. These proofs are far too complicated for humans
to create by hand. Many mathematicians will gesture toward the existence of the
formal logic as justification for their traditional proofs: with enough time and energy,
theoretically, these traditional proofs could be made fully formal. The implicit rules
of the proof game are rooted deep down in the formal deduction rules of first
order logic. But in practice the two proof styles are far removed. And why bother
trying to narrow the gap? The route of repetition and osmosis has taught many a
mathematician to distinguish valid proofs from invalid proofs, and the community
as a whole is close to perfect at this task (except for some rare and publicized edge
cases). If easily checkable correctness is all that formal proof has to offer, it hardly
seems worth the prohibitive difficulty.



THE ART OF FORMAL PROOF 3

3. PROOF ASSISTANTS AS CHECKERS

Whitehead and Russell’s verbose experiments [14] and Godel’s incompleteness
theorems made the idea of formal proof in practice solidly unfashionable. But a
small stream of mathematicians, and later computer scientists, continued to pursue
the dream of mechanically checkable proof.

Computer scientists, in particular, are used to separating high level “input
languages” from low level “output languages.” A program written in a modern
programming language like Python is far removed from the instructions seen by
the computer processor. Many layers of abstraction allow a programmer to write
humanly-accessible code that can ultimately be translated to the arcane, illegible
processor level. There’s an analogy here with proof: a formal derivation is like
processor instructions; a traditional proof is like a Python program; the unsubstan-
tiatable gesture that a traditional proof corresponds to a formal derivation is like
the translation from high level code to low level code. And this code translation is
certainly practical, so why not proof translation?

One obvious difference is that the language of traditional proofs is far less
controlled than that of a programming language. The gap between proof styles
is much wider than that between code styles! This suggests a way to reframe the
question: instead of taking traditional math proofs as “input”’—written in natural
language, with all its ambiguities—we should dream up a language for mathematics
that looks a bit more like a programming language. And maybe first order set
theory isn’t the ideal target language either.

Today, instantiations of this idea are called proof assistants or interactive theorem
provers. A proof assistant (broadly speaking) combines an input language for
defining objects, stating theorems, and writing proofs of these theorems with an
algorithm that checks whether inputs correspond to valid proofs in some underlying
logic. A user takes a traditional proof, say, that \/2 is irrational, and writes it in
the controlled language of the proof assistant; this proof is checked for mistakes,
ambiguities, and missing steps, which are reported back to the user. Under the
hood, the software is producing a fully formal derivation and making sure that each
rule is applied correctly. Checking is automatic, but writing is not: the ideas and
arguments in the proof need to be communicated precisely by the human proof
writer.

Two pioneering proof assistants, Automath [4] and Mizar [5], were developed
in the 1960s and 1970s. Since then, there have been substantial mathematical
developments in Isabelle [I1], Coq [7], Metamath [9], and others, although computer
scientists were quicker to adopt these tools. The Lean proof assistant [10], a relative
newcomer to the field, has attracted a large number of mathematicians and gotten
attention in the popular press [6].

Practitioners use the word “formalizing” to refer to the process of writing a proof
in the language of a proof assistant. Formalizing a proof can be both frustrating
and rewarding: absolutely no bluffing is allowed, and some systems require a level
of detail in proofs beyond even the pickiest of human readers, but the satisfaction
of convinicing the proof assistant is immense. Making the rules of the proof game
fully explicit erases the uncertainty and doubt that students and professionals alike
sometimes feel in their proofs.



4 ROBERT Y. LEWIS

example : - Rational (sqrt 2) := by 1goal
intro h ¥ case intro.intro.intro
unfold Rational at h nd: 7
obtain (n, d, root 2 eq, d nonzero) :=h root 2 eq : v2 = tn / td

d nonzero : d # @
L}
u I False

FIGURE 2. As we prove the irrationality of /2 in Lean, the system
displays our context (above the + symbol) and goal (after the +
symbol) on the side.

4. PROOF ASSISTANTS AS INFORMATION MANAGERS

Proof assistant input languages are still a far cry from the natural language of
traditional proof. It is usually more difficult—sometimes much more difficult—to
formalize a proof than to write it in prose. Nevertheless, a growing number of
mathematicians are using these tools. Unlike derivations in formal logic, proof assis-
tants offer something on top of correctness guarantees: a mathematician formalizes
a proof incrementally, and the software reports back on the proof status at each
increment. The mathematician can see what variables are in scope, what hypotheses
are available, and what goals remain to be shown, and can expand definitions to see
the meaning of a statement. Ideally, the proof assistant serves as an information
manager helping the mathematician to construct their argument, hence the name
“assistant.”

Consider again formalizing a proof that \/2 is not rational. I might start by
supposing for the sake of contradiction that it ¢s rational; the proof assistant adds
a hypothesis h to its context asserting this, and changes my goal to showing a
contradiction (“False”). I can then expand the definition of “rational,” changing
the hypothesis h to assert that there exist integers a and b, b # 0, such that /2 = T
As I proceed with the proof, I continue to see these changes to the context and goals
in real time.

Humans can only store so much information in their heads at once. At the frontiers
of mathematics, keeping track of the definitions, goals, and implicit information in
a proof can become challenging even for experts. In 2020 the Fields medalist Peter
Scholze challenged mathematical formalizers to verify a result of his in condensed
mathematics, writing of his traditional proof, “we were able to get an argument
pinned down on paper, but I think nobody else has dared to look at the details
of this, and so I still have some small lingering doubts.” A group led by Johan
Commelin completed the challenge a year later by proving Scholze’s theorem in
Lean, leading Scholze to remark:

The Lean Proof Assistant was really that: An assistant in navigating
through the thick jungle that this proof is. Really, one key problem
I had when I was trying to find this proof was that I was essentially
unable to keep all the objects in my “RAM”, and I think the same
problem occurs when trying to read the proof. Lean always gives
you a clear formulation of the current goal, and Johan confirmed
to me that when he formalized the proof of Theorem 9.4, he could
— with the help of Lean — really only see one or two steps ahead,



THE ART OF FORMAL PROOF 5

formalize those, and then proceed to the next step. So I think here
we have witnessed an experiment where the proof assistant has
actually assisted in understanding the proof.

This remarkable achievement was not a standalone effort. Commelin and collabo-
rators worked on top of a massive library of definitions and proofs already formalized
in Lean. This library, Mathlib [§], contains 1.6 million lines of code written by
hundreds of contributors and is growing fast. Its contents range from the definitions
of algebraic structures like rings and fields, to complicated number-theoretic objects
like Witt vectors [3], to the building blocks of differential topology [12], and much
more. Mathlib is a giant interconnected web of mathematical data; the proof
assistant ensures that its many pieces fit together properly and that there are no
mistakes or gaps in proofs, allowing for collaboration at scale. It’s once again an
information manager, but at the library level.

5. THE ART OF FORMALIZING

Learning about proof assistants for the first time, some people imagine that relying
so heavily on software diminishes the creative human side of mathematics. I disagree:
formalization is very much a human act, a dance between the mathematician and
the proof assistant, that often teaches the formalizer mathematical lessons. There is
an art to finding the perfect formal definition, just the right combination of theorems
from the library, the minimal sequence of proof steps to complete a goal. These
tools are far from rote proof checkers. Some day they will be indispensible tools in
the mathematician’s toolbox.

Kevin Buzzard’s Natural Number Gameﬂ lets you experience this dance for
yourself, and has been a jumping-off point for countless students and professional
mathematicians to learn about formalization. Try it out—you might get hooked.

REFERENCES

[1] Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn. Logic and Proof. Carnegie Mellon
University, 2017.

[2] Tim Button. Set Theory: An Open Introduction. The Open Logic Project, 2021.

[3] Johan Commelin and Robert Y. Lewis. Formalizing the ring of Witt vectors. In Proceedings of
the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2021, page 264-277, New York, NY, USA, 2021. Association for Computing Machinery.

[4] N.G. de Bruijn. The mathematical language Automath, its usage, and some of its extensions.
Studies in Logic and the Foundations of Mathematics, pages 29-61. Springer-Verlag, 1970.

[5] Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a nutshell. Journal of
Formalized Reasoning, 3(2):153-245, 2010.

[6] Kevin Hartnett. Building the mathematical library of the future. Quanta Magazine, 2020.

[7] Assia Mahboubi and Enrico Tassi. Mathematical Components. Zenodo, Nov 2020.

[8] The mathlib Community. The Lean mathematical library. In CPP, page 367-381, New York,
NY, USA, 2020. ACM.

[9] Norman Megill and David A. Wheeler. Metamath: A Computer Language for Mathematical
Proofs. Lulu Press, 2019.

[10] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction — CADE 28,
pages 625-635, Cham, 2021. Springer International Publishing.

[11] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

1https ://adam.math.hhu.de/#/g/hhu-adam/NNG4


https://adam.math.hhu.de/#/g/hhu-adam/NNG4

6 ROBERT Y. LEWIS

[12] Floris van Doorn, Patrick Massot, and Oliver Nash. Formalising the h-principle and sphere
eversion. In Proceedings of the 12th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2023, page 121-134, New York, NY, USA, 2023. Association for
Computing Machinery.

[13] Daniel J. Velleman. How to Prove It: A Structured Approach. Cambridge University Press, 3
edition, 2019.

[14] Alfred North Whitehead and Bertrand Arthur William Russell. Principia mathematica; 2nd
ed. Cambridge Univ. Press, Cambridge, 1927.



	1. Introduction
	2. Formal logic
	3. Proof assistants as checkers
	4. Proof assistants as information managers
	5. The art of formalizing
	References

