
KLean: Extending Operating System Kernels with
Lean

Di Jin
Brown University

Providence, Rhode Island, USA
di_jin@brown.edu

Ethan Lavi
Brown University

Providence, Rhode Island, USA
ethan_lavi@brown.edu

Jinghao Jia
University of Illinois
Urbana-Champaign

Champaign, Illinois, USA
jinghao7@illinois.edu

Robert Y. Lewis
Brown University

Providence, Rhode Island, USA
robert_lewis@brown.edu

Nikos Vasilakis
Brown University

Providence, Rhode Island, USA
nikos@vasilak.is

Abstract
Safe kernel extension is an extremely successful feature in
OS kernels with a plethora of interesting applications. It pro-
vides significant performance benefits by avoiding context
switching and data copying, without compromising the ker-
nel’s integrity due to its verifiable safety. The most mature
existing approach, namely BPF, verifies extension safety us-
ing sound abstract interpretation techniqueswith best effort
precision. Such design not only increases the kernel main-
tenance burden due to its complexity, but also restricts ex-
tension expressiveness due to its approximations. The core
of the problem, we argue, is the BPF verifier’s dual mandate
of precision and soundness in its safety analysis.

We propose KLean: a Lean-based kernel extension frame-
work that decouples safety reasoning, offloading the safety
proving responsibility to user space while only implement-
ing safety specification and checking in the kernel. KLean’s
design significantly reduces the burden for kernel mainte-
nance, while giving users the full expressiveness power of
Lean.We envision KLean to enable significant advancement
in safe kernel extension applications.

CCS Concepts: • Software and its engineering → Oper-
ating systems; Formal methods; Software safety.

Keywords: BPF, Verification, OS Kernels, Kernel extensions,
Formal methods

ACM Reference Format:
Di Jin, Ethan Lavi, Jinghao Jia, Robert Y. Lewis, and Nikos Vasilakis.
2025. KLean: Extending Operating System Kernels with Lean. In
13th Workshop on Programming Languages and Operating Systems

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PLOS ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2225-7/25/10
https://doi.org/10.1145/3764860.3768336

(PLOS ’25), October 13–16, 2025, Seoul, Republic of Korea.ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3764860.3768336

1 Introduction
Verifiably safe OS kernel extensions are madly in need, as
indicated by the increasing popularity of BPF in areas like
tracing [49], networking [44, 77, 90, 98], storage [96], mem-
ory management [27, 95], and scheduling [48, 53]. The vi-
brant BPF mailing list has long been filled with questions
and feature requests.
Core to BPF’s design is its safety promise through static

verification. When a BPF program is loaded into the ker-
nel, the in-kernel BPF verifier performs abstract interpre-
tation on all possible execution paths (with search prun-
ing) and verifies a set of safety properties such as memory
safety and termination. However, the BPF verifier has sig-
nificantly increased in complexity since its original adop-
tion in Linux, leading to a long list of vulnerabilities [10–
13]. Moreover, the restrictions imposed by the verifier have
become constraining factors for BPF program expressive-
ness [39, 44, 50]. We argue that the current design requires
the BPF verifier to achieve high precision in a sound static
analysis algorithm, which is fundamentally difficult.
To address this issue, we propose KLean: a Lean frame-

work for implementing safe kernel extensions. Lean enables
the decoupling of the problem: it ensures safety verifica-
tion via its core type checker, allows expressive safety spec-
ification through its dependent type system, and most im-
portantly, enables offloading of the safety proving respon-
sibility completely to user space. Other Lean features also
make it suitable for safe kernel extension: (1) built-in, ex-
tensible proof support and tactics that simplify proof writ-
ing, (2) battery-included libraries and built-in optimization
mechanisms for efficient run-time performance, (3) power-
ful meta-programming infrastructure that enables domain-
specific language and proof automation.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3764860.3768336
https://doi.org/10.1145/3764860.3768336


PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Jin et al.

We foresee interesting challenges such as improving the
performance vs. TCB-size tradeoff, sound and precise re-
source consumption estimation, etc. KLean’s design will ex-
pand the domain of safe OS kernel extension, and open up
unprecedented opportunities for system research, including
efficient system call virtualization, complete datapath dele-
gation, KLean-aware compiler optimizations, and so much
more.

2 Background
2.1 BPF and Safe OS Kernel Extension
BPF [69] started as a simple domain-specific language to
filter packets for network monitoring applications, saving
CPU cycles on processing and delivering unnecessary pack-
ets to the user process. Since then, BPF has evolved into a
general-purpose safe kernel extension mechanism, with a
wide range of applications.

BPF programs are typicallywritten in high-level languages
such as C and Rust, then compiled into BPF bytecode. BPF
bytecode is defined similar to a RISC instruction set, en-
abling simpler JIT compilation [31]. Toolchains like BCC [49],
LLVM [64], and libbpf [5] help transform high-level lan-
guages to BPF bytecode, simplifying the development.

The safety of a BPF program is ensured by the BPF verifier,
which verifies safety properties — such as memory safety,
termination, type safety, and invariants related to locks and
memory allocation — on BPF bytecode. BPF programs that
pass the verifier are accepted by the kernel, and can then be
JIT-ed and attached to BPF hooks.The BPF hooks refer to the
kernel’s definition of how a BPF is registered and invoked at
specific extension points. Later, when execution reaches the
hook (e.g., a packet arrives), the BPF program is triggered
and executed, with a domain-specific data structure (dubbed
the context object) as the argument.

The kernel provides two other functionalities to BPF’s
runtime. BPF maps are a set of pre-defined data structures
(e.g., array, hash map) that store persistent state across BPF
invocations and communicatewith the user space.BPF helpers1
are native functions that can be invoked from BPF programs
to interact with a subset of kernel states, as well as im-
plementing features that cannot be easily verified, such as
loops and string manipulations.

2.2 Calculus of Inductive Constructions and Lean
The Calculus of Inductive Constructions (CIC), a family of
type theories allowing for dependent types, is recognized
for its use in verified programming. These type theories
are expressive enough to encode arbitrary mathematical
propositions as types. Languages based on the CIC, such as
Rocq [91], Lean [72], and Agda [26], permit users to write
programs that are correct by construction: they can write ar-
bitrarily detailed specifications of the observable behaviors
1For simplicity, both helpers [3] and kfuncs [62] are referred to as helpers.

of their programs and prove that these specifications are
met.
Unlike many frameworks for program verification, such

languages fully separate proof search from proof checking.
Users are expected to construct a proof term, typically in in-
teraction with untrusted language components and automa-
tion; this proof term is then checked by a small trusted core.
While determining whether an arbitrary specification holds
is an undecidable problem, checking whether a given proof
is correct is identical to type-checking a program and is de-
cidable and efficient.

Languages with this foundation and architecture are of-
ten classified as proof assistants, emphasizing proof-checking
over executable code. Lean 4 has recently gained recogni-
tion as a full-fledged functional programming language, fea-
turing a mature standard library, performant runtime, com-
piler producing reliable and optimized code, and significant
self-reflection capabilities [72]. Its “local imperativity” fea-
tures [92] allow programmers to write code with attention
to memory management while remaining in a functional,
verifiable fragment of the language. Lean’s core library and
mathematical library [68] contain powerful tactics to as-
sist users in constructing proof terms; with its metapro-
gramming framework [40], users can easily add their own
domain-specific proof automation.

3 Motivation
Theentire BPF subsystem depends on the BPF verifier: BPF’s
safety hinges on the verifier’s soundness, and BPF’s expres-
siveness on the verifier’s precision. However, some safety
properties are hard to analyze with a typical type-inference-
style algorithm. As a result, BPF struggles from not only ver-
ifier soundness issues due to its complex algorithm, but also
limited program expressiveness. In this section, we will dis-
cuss impact of BPF verification on kernel code complexity
and maintenance burden, as well as the expressiveness re-
striction on BPF programs.

3.1 Verifier Complexity
Memory safety has been a core guarantee since BPF’s incep-
tion. The verifier performs path-sensitive abstract interpre-
tation on the value range domain for scalars, used to deter-
mine whether a pointer offset is within bound of the object.
To support safety reasoning in specific code patterns, a con-
stant stream of precision improvement changes was added
over time. These include control-flow state refinement [82],
ALU precision improvement [81], state pruning and merg-
ing [88], signedness-related range improvement [34], and
memory operations precision improvement [57, 60, 65]. Due
to the challenging nature of these analyses, these changes
also led to bugs and security vulnerabilities [19, 21, 24, 29,
32, 38, 66], which sometimes are incorrectly fixed [67], or
caused the feature to be dropped entirely [24].



KLean: Extending Operating System Kernels with Lean PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

Agni [93] aims to automatically verify abstract operator
soundness in BPF’s range analysis. But verifying full sound-
ness of the range analysis remains unsolved partly due to
state pruning [16]. Additionally, applying Agni to the evolv-
ing BPF verifier also has scalability challenges due to its use
of SMT solvers, which may increase the kernel maintenance
burden to develop efficiently verifiable kernel code [15, 16],
as the price for verified soundness.

Termination is another central safety property of BPF.
BPF previously enforced a no-jump-backward property com-
bined with a flat BPF program size limit. Over time, the need
for looping prevailed, and several looping features were
added [56, 73, 80, 85].This further complicates safety reason-
ing because the verifier essentially needs to find an appropri-
ate loop invariant to avoid having to reason about all pos-
sible looping iterations. However, generic automatic loop
invariant reasoning is very complex [17, 41]. In the BPF ver-
ifier, loop invariant reasoning, partly represented as state-
equivalence-based search pruning, is constantly updated for
precision [25, 33, 74, 83], which naturally introduces bugs
due to its complexity [20–23, 29, 35, 51, 84, 94, 97, 100–102].

3.2 Limited Programmability and Expressiveness
It is commonly reported that the verifier is unable to accept
programs that are relatively simple and safe [39, 50], creat-
ing programmability and usability limitations for BPF users.
Here, we discuss three notable manifestations of such lim-
itations: the restriction for memory access patterns, the re-
striction on locking, and the restriction on loop complexity.
These are a subset of the restrictions in BPF today, and more
will inevitably appear as more features are added.

Restrictions on memory access patterns. The typical
way for BPF programs to handle memory safety is through
path-sensitive range analysis. The verifier make many ap-
proximations during the analysis, including: (1) discarding
range information for content in BPF maps, (2) limiting nu-
merical reasoning ability, and (3) forbidding dynamic access
into stack or context objects. Under these constraints, de-
velopers are forced to perform additional checks and pro-
vide error handling logic at runtime, even if the program
was safe without them, degrading performance and adding
complexity [18, 37, 39, 45, 50, 78, 89]. Moreover, it is also
commonly reported that the restrictions force users writing
in high-level languages to use non-idiomatic code patterns
that are difficult to maintain or migrate [1, 2].

Restrictions on locking. BPF programs are allowed to
take spin locks to synchronize data accesses [86]. The ver-
ifier ensures that the program releases the lock on every
execution path. However, the verifier implements a harsh
solution to deadlocks — BPF programs can only a single
lock at a time. Although doing so effectively eliminates
the possibility of deadlocks [30], it also prevents develop-
ers from writing more complex synchronization patterns.

Such restriction is difficult to work with in contexts such as
BPF-extended scheduling, where BPF programs need to in-
teract with multiple data structures concurrently [14]. The
most promising systematic solution adds dynamic checks
and changes to the locking semantics [39].

Restrictions on loop complexity. The verifier imposes
limits on the number of instructions and branches it ex-
plores in an incoming program [87]. Programs exceeding
these limits will be rejected. Such complexity limits exist not
just to ensure program termination guarantee, but more im-
portantly, to prevent the verifier from running indefinitely
due to exponential path explosion.
As a result, developers of more complex BPF programs

frequently find themselves fighting against the complexity
limits. In many cases, developers have to refactor and split
their programs into smaller pieces connected with BPF tail
calls to pass verification, as shown by previous studies [50].
For example, the BPF Memcached Cache (BMC) [44] was
split into seven programs, while logically two are required:
networking ingress and egress.
The complexity limits also prevent BPF programs from

having complex loops with non-trivial invariants [6, 39]. In
BMC, the developers had to add an artificial packet length
limit to ensure the loop iterating over the packet bytes
would be accepted by the verifier [44].

4 Proposed Solution
4.1 KLean: System Design
We propose to use Lean as the safe kernel extension lan-
guage. The overall architecture is shown in Figure 1. When
the user wants to register a KLean extension on a KLean
hook, they provides a Lean object representing an extension,
whose type is specified by the hook. The type conformity
(including safety properties) is checked by the Lean type
checker.Then the checked Lean code will be invoked within
the kernel whenever the hook point is triggered. KLean
solves the limitations of static safety analysis by decompos-
ing the problem into safety specification, safety checking,
and safety proving. This decomposition simplifies the prob-
lem because it enables KLean to offload the most difficult
and application-specific part — safety proving — entirely to
user space.
Such offloading reduces the kernel’s maintenance burden

and lifts the restrictions on how users can write extension
programs, provided they can prove them safe.

Safety specification. An important part of KLean is the
interface specification between KLean and the kernel. Us-
ing Lean’s powerful type system, KLean will annotate the
KLean-kernel API (starting from BPF’s helper functions)
with type signatures that properly reflect the invariants for
kernel safety, including those handled by the BPF verifier
currently.We also envision the API to encodemore complex



PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Jin et al.

User 
Application

Lean Type
Checker Checked Lean

KLean-Kernel API

KLean Hook

KLean Runtime Environment

Global
States

Kernel
Data

Userspace
Kernel

Lean 
Elaborator

Proof 
Automation

External 
Property 
Checker

Figure 1. Overall architecture of KLean.

invariants (e.g., locking order), allowing the kernel to expose
lower-level APIs without wrapping them in additional run-
time checks.

Safety checking. The powerful type system of Lean re-
duces safety checking to just type checking, which can be
done by Lean’s type checker. Relative to its generality, Lean
type checker is very minimal. A Rust implementation of the
type checker comprises only 7500 lines of code [7]. More im-
portantly, based on well-studied mathematical theory, the
Lean type system and type checker change rarely and mini-
mally [4]. Therefore, KLean’s verifier code will put minimal
burden on OS kernel maintenance.

Safety proving. Towrite a safe KLean extension, the user
bears the burden of creating an extension that Lean type
checker will accept. Typically, this translates to writing an
executable Lean function and providing a proof that it sat-
isfies the safety properties encoded in the type requirement.
As a result, the user is no longer restricted to certain code
patterns, as long as they can provide a proof for the safety
properties, unleashing expressiveness and freedom in exten-
sion development. Although safety proofs can require extra
work from the users — which may be alleviated with proof
automation (§5.1) — it does not restrict expressiveness be-
cause virtually all safe programs can be proven safe.2

4.2 Unlock Full Expressiveness
Wenow concretely discuss howKLean can handle the safety
properties mentioned in Section 3.

2There is no guarantee that every safe program can be proven safe. But for
programs that humans are able to reason to be safe, there is every reason to
expect that the reasoning translates to Lean: for example, Lean’s Mathlib
library [68] has formalized a nontrivial portion of modern mathematics.

1 @[extern "k_read_array"]
2 opaque k_read_array (i : ℕ) (h: i < 16) : ℕ
3
4 theorem fermat_last_theorem (n a b c : ℕ)
5 (hn : 2 < n) (ha : 0 < a)
6 (hb : 0 < b) (hc : 0 < c)
7 : a ^ n + b ^ n ≠ c ^ n := by
8 -- Proved by Andrew Wiles and other mathematicians,
9 -- but the proof is too large to fit in the margin
10 done
11
12 structure PosInt where
13 val : ℕ
14 p : val > 0
15 -- other fields
16
17 def read_or_zero (n : ℕ) (a b c : PosInt) :
18 IO ℕ := do
19 if pred : a.val ^ n + b.val ^ n = c.val ^ n then
20 let x := k_read_array n (by
21 apply Nat.gt_of_not_le
22 intro n_gt_16
23 have n_gt_2 : n > 2 :=
24 Nat.lt_of_le_of_lt (by decide) n_gt_16
25 apply fermat_last_theorem n a.val b.val c.val
26 n_gt_2 a.p b.p c.p
27 exact pred
28 )
29 return x
30 else
31 return 0

Listing 1. Proving k_read_array’s range requirement us-
ing Fermat’s last theorem.

ArbitraryRangeReasoning. Range requirement is com-
monly needed to ensure memory safety. In Listing 1 we
show a hypothetical example where a kernel API k_read_ ⌋
array requires the index argument to be less than 16. In
Lean, this property can be encoded as a proof argument h for
proposition i < 16, along side the index argument i. Func-
tion read_or_zero takes one natural number 𝑛 and three
positive integers 𝑎, 𝑏, and 𝑐, only calling k_read_array
with 𝑛 if 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 . According to Fermat’s last theorem,
𝑛 < 3 is always true when such condition holds. Therefore
the call is memory safe without needing additional checks.
Such guarantee cannot be easily deduced by existing BPF
infrastructure because (1) it is based on range property for
composite data type PosInt, and (2) it has (extremely) non-
trivial algebraic relations between variables that leads to the
range limit on 𝑛.

KLean can admit this program because Lean’s proof lan-
guage is expressive enough to specify reasoning as complex
as Fermat’s last theorem (or other simpler safety proofs).

Importantly, all proofs (k_read_array’s h argument, p
field in PosInt, and the entire proof between Line 20–28)
are erased at runtime, meaning that the complex proof rea-
soning does not impact runtime performance at all. Apart
from performance benefits, static reasoning is also preferred
over dynamic checking because kernel error handling can
sometimes be difficult (e.g., holding a lock with inconsistent
state changes).



KLean: Extending Operating System Kernels with Lean PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

Precise Locking Specification. BPF’s current approach
to deadlock-freedom is to only allow one lock held at any
point. It is significantly more restrictive than the actual in-
variant the kernel maintains [71]: there is a strict global ac-
quisition order between lock classes, and if a process wishes
to hold multiple locks, they must be acquired in that order.

KLean can relax BPF’s current restriction by precisely
specifying such an invariant. To specify this property, KLean
will first define a partial order between locks in a KLean ex-
tension. Then we can define the locking invariant by speci-
fying properties over the locking operation history.

For example, in Listing 2, the KLean hook defines its de-
sired KLean extension as type LockSafeProg, which in-
cludes two parts: prog that represents the actual program,
and p_order that proves its lock acquisition order.
The executable prog will interact with the kernel states

through the KStateMmonad, an abstract class whose defini-
tion roughly corresponds to the available KLean-kernel in-
terfaces (analogous to BPF helpers). KStateM can be instan-
tiated with RealKStateMmonad, where the interface is im-
plemented by actual helpers, or LockTraceStateMmonad,
where the interface is implemented by stubs that trace the
locking operations. The p_order is a proof that specifies if
prog is plugged in with LockTraceStateM, the lock his-
tory it generates follows the lock acquisition order.

When the entire LockSafeProg is attached, the KLean
hook extracts the executable function prog and instantiates
it with RealKStateM, such that it will interact with the
real environment. The entire proof reasoning, including the
traced execution, proof over the locking traces, along with
other proof components, will be erased at runtime, and no
performance overhead is incurred.

Loop reasoning. Reasoning about loops or recursion does
not add significant difficulty for KLean. The user can use
Lean’s type system to encode loop invariants or inductive
hypotheses explicitly, without relying on implicit inference.

Termination is slightlymore complicated.Well-typed Lean
function always terminates, because Lean only allows well-
founded recursions [58]. Therefore, the termination prob-
lem seems to be resolved for free. However, there is a cru-
cial subtlety that makes this the more challenging prop-
erty to specify: Although the OS kernel needs to avoid in-
finite loops, which is guaranteed by Lean automatically, it
is also strongly desired for functions not to run too long in
a preemption-disabled or interrupt-disabled context [63]. In
fact, such problem exists in BPF as well: helper-based loops
can cause significant stalling [51, 94].
Lean’s type system, by design, cannot distinguish between

two functions with the same input-output relations, mean-
ing that execution time cannot be reasoned purely using
Lean’s type checker. We propose to use a hybrid approach
of monad-based modeling [70] and an external property
checker performing additional static analysis [47] external

1 section open KStateM
2 def myprog {m : Type → Type} [Monad m] [KStateM m]
3 (n : ℕ) : m Unit := do
4 lock 1
5 let n ← get_v
6 if n > 5 then
7 lock 3
8 set_v n+1
9 unlock 3
10 unlock 1
11 end
12
13 theorem myprog_lock_in_order : ∀ (s : KState),
14 strictlyOrdered ((myprog TraceKStateM).run s).trace :=
15 -- proof omitted
16
17 structure LockSafeProg where
18 -- A program that interact with kernel state
19 -- defined by the monad
20 prog (m : Type → Type) [Monad m] [KStateM m] : m Unit
21 -- For any input state, prog's lock operation
22 -- satisfies the ordering condition
23 p_order (s : KState):
24 strictlyOrdered ((prog TracedKStateM).run s).trace
25 -- omitting other safety properties
26
27 def hookTerm : LockSafeProg :=
28 LockSafeProg.mk myprog myprog_lock_in_order
29 def hookRun : RealKStateM Unit := hookTerm.prog RealKStateM

Listing 2. Specifying a strict lock acquisition order over all
possible execution traces in KLean.

to Lean. Such design allows fine-grain user control of the
reasoning while preventing malicious user extensions from
escaping the resource accounting.

5 Research Directions
5.1 Improving KLean
We have shown that KLean provides major benefits over ex-
isting BPF infrastructure. However, BPF still has some ben-
efits over KLean’s design, and more research can be done to
close the gap.

Improving trust-performance trade-off. AlthoughBPF’s
verifier can be limiting for generic code patterns, for the
most prominent BPF programs that the verifier targets, BPF
can have better performance. This is because BPF programs
are already optimized by the compiler [52, 64] before being
verified and loaded into the kernel.

Lean is designed with performance in mind. However,
adding optimizations post-verification would expand the
TCB (trusted computing base). As shown in Figure 2, Lean
currently has three evaluation modes with different trade-
offs. Lean’s most trusted execution is its core interpreter.
However, it can be too slow for ordinary programs (e.g.,
when they include non-structural recursions). The next op-
tion is native-extension-accelerated interpreter, where se-
lected Lean types (e.g., vectors, hash tables) have a native
mirror implementation in C++. These extensions make the
interpretation much more efficient, at the cost of trusting
the correctness of their native implementation. Lastly, Lean
supports compilation. It first runs a Lean-to-C compiler



PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Jin et al.

Trustworthy

Runtime Performance

Lean core interpreter

Lean core interpreter +
native optimized extensions

Lean-to-C + CompCert

Lean-to-C + LLVM

Verified Lean 
compiler

JIT compilation

Figure 2. Lean execution model and trade-offs.

written in Lean, then compiles the C code using a bundled
LLVM compiler. Compilation comes at the cost of trusting
the entire Lean-to-C compiler and LLVM compiler under po-
tentially malicious input, which is beyond the capability of
typical kernel maintaining groups.

Ideally, we would create a verified Lean compiler that
maintains all the safety guarantees while producing fast
native code. Before that is possible, we propose that the
first version of KLean should adopt Lean’s accelerated in-
terpreter execution model. We also propose two research
directions to improve the trust-performance trade-off: (1)
Modify the Lean-to-C compiler to target the C dialect sup-
ported by verified C compilers like CompCert [61], and (2) a
baseline just-in-time compilation using boxed Lean objects
with type- and hint-guided inlining and specialization.

DSL and proof automation. One benefit of BPF, despite
confusion and problems [50], is its automated safety reason-
ing. If developers follow a restricted code pattern, safety can
be proven without additional effort.

In the general scenario, finding safety proofs automati-
cally is undecidable. However, it is possible to bring BPF’s
philosophy into KLean. For scenarios where a restricted lan-
guage suffices, such as regular expression or circuit-like lan-
guage [28, 79], Lean’s powerful meta-programming capabil-
ity can define such a language as a DSL within Lean and
automatically derive safety proofs. Because the DSLs still
translate to Lean, the kernel-side infrastructure does not
need any changes to support new DSLs.

It is also possible to create DSLs like BPF with best-effort
proof automation, providing a similar interface to existing
BPF development (à la Nelson et al. [76]). Then, the origi-
nal verification strategy of the BPF verifier can be added as
proof tactics, allowing the user to fill in the gaps when the
BPF verifier algorithm fails. Importantly, the verification en-
gine for BPF can now reside in user space, allowing it to
be freely extended without changing the safety assurances
provided by KLean. Instead, if a bug were introduced to the

BPF verifier tactic, KLean would simply reject the generated
proof, eliminating the risk to kernel safety.

5.2 Advancing OS Kernel Extension Research
KLean will enable a wide range of operating-system-related
research projects that can be difficult to efficiently imple-
ment in BPF due to its various restrictions. We will discuss
some preliminary ideas that demonstrate such potential.

Efficient system call virtualization. A class of systems,
including MBOX [54], CDE [46], and others [9, 36, 42],
modifies system call semantics to enhance security, visi-
bility, performance, and compatibility in off-the-shelf soft-
ware.These systems transform, record, or block system calls
to achieve their objectives. However, they either require
kernel changes or introduce unnecessary overhead using
process-level tracing [8], which induce additional context
switching and data-copying because of the extra round trip
on each system call.

With KLean, it will be possible to implement system call
virtualization: customize system call semantics by building
KLean extensions on top of the current kernel. Research sys-
tems, in the same class as MBOX and CDE, could be imple-
mented in this manner, getting the best of both worlds.

Complete data-path delegation. Many applications [44,
98] with service-based architecture use BPF to speed up
their fast-path processing, avoiding excessive context switch-
ing and data-copying. However, due to BPF’s verifier restric-
tions, much of the complex request handling logic still has
to remain in user space. With KLean’s much more powerful
safety and termination verification capabilities, we envision
that it is feasible to delegate entire data paths to the ker-
nel without sacrificing any safety, while only keeping the
control-path management in the user space process.

KLean-aware compiler optimization. Past research on
BPF-enhanced networking [98, 99] and storage [96] has
shown the power of kernel extension on data-intensive tasks.
Leveraging KLean’s expressiveness, we propose to investi-
gate a opportunistic compiler optimization: transforming
applications snippets into kernel extensions, automatically
improving their performance without sacrificing safety.
For instance, applied to distributed or middlebox systems,

the compiler can try to identify network-heavy code snip-
pets that do not expose intermediate results with the rest of
the system. Then the optimization will amalgamate the sys-
tem calls (similar to Anycall [43]) and transform them into
KLean extensions. Such opportunistic optimization, guided
by heuristics and dynamic profiling, can improve network
performance automatically while allowing developers to
program with more focus on the logical abstraction.



KLean: Extending Operating System Kernels with Lean PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

6 Related Work
Requiring proofs for the safety of kernel extensions is not
new. In fact, safe kernel extensions for packet filtering are
one of themain proposed use cases for proof-carrying code [75].
Building on decades of advances in formal verification in
theory and software systems, KLean offers more powerful
and well-defined specification and proving capabilites.

Verus [59] is a verification framework that enables speci-
fying and proving properties about Rust programs, utilizing
a SMT solver for its proof checking. KLean chooses Lean be-
cause proof terms are first class construct in the language,
which enables clear and simple kernel-user interface design.

Rex [50] proposes an alternative safe kernel extension
scheme based on Rust. It simplifies safety verification by
leveraging Rust’s type system and safety guarantees. Un-
like KLean, however, Rex cannot easily specify more cus-
tom safety properties without extending its core. For exam-
ple, Rex cannot enforce complex invariants such as locking
order and termination without runtime components.
Formally verified operating systems such as seL4 [55] aim

to improve kernel reliability with formal verification. KLean
complements this effort by enabling run-time extensions
to be formally verified. We also envision KLean to enable
more kernel development in the form of safe kernel exten-
sions, achieving partial verification in giant monolithic ker-
nels like Linux.

7 Conclusion
We propose KLean, a Lean framework for implementing
safe kernel extensions, leveraging the power of a depen-
dent type proof assistant. Compared to BPF, the existing
approach, KLean enables the decoupling and offloading of
safety proving responsibility to userspace, reducing kernel
maintenence burden and improving extension expressive-
ness.

References
[1] Access packet data as &[u8] from XdpContext. https://github.com/

aya-rs/aya/issues/100. (Nov. 2021).
[2] BPF Verifier errors when using aya logger with strings, c_chars, and

[u8]. https://github.com/aya-rs/aya/issues/546. (Mar. 2023).
[3] bpf-helpers(7) – Linux manual page. https://man7.org/linux/

man-pages/man7/bpf-helpers.7.html.
[4] Lean git history. https://github.com/leanprover/lean4/commits/

master/src/kernel/type_checker.cpp.
[5] libbpf. https://github.com/libbpf/libbpf.
[6] missing btf func_info whilst using bpf_loop(). https://github.com/

aya-rs/aya/issues/521. (Feb. 2023).
[7] nanoda_lib. https://github.com/ammkrn/nanoda_lib/.
[8] ptrace(2) – Linux manual page. https://man7.org/linux/man-

pages/man2/ptrace.2.html.
[9] Windows Subsystem for Linux. https://github.com/microsoft/WSL.
[10] CVE-2017-17864. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2017-17864, December 2017.
[11] CVE-2018-18445. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2018-18445, October 2018.

[12] CVE-2020-8835. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-8835, February 2020.

[13] CVE-2021-3490. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3490, April 2021.

[14] Alden, D. A new type of spinlock for the BPF subsystem. https:
//lwn.net/Articles/1016674/.

[15] Alden, D. Formally verifying the BPF verifier. https://lwn.net/
Articles/1020664/.

[16] Alden, D. Verifying the BPF verifier’s path-exploration logic. https:
//lwn.net/Articles/1021825/.

[17] Baldoni, R., Coppa, E., D’Elia, D. C., DemetRescu, C., and Finoc-
chi, I. A survey of symbolic execution techniques. ACM Comput.
Surv. 51, 3 (2018).

[18] BoRKmann, D. bpf: compress maglev per service lut into
flat slot id array. https://github.com/cilium/cilium/commit/
bfaef16f34851aada5189df2eaebce351dd2543e. (Sept. 2020).

[19] BoRKmann, D. bpf: Fix alu32 const subreg bound
tracking on bitwise operations. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
049c4e13714ecbca567b4d5f6d563f05d431c80e. (May. 2021).

[20] BoRKmann, D. bpf: Fix check_return_code to only al-
low [0,1] in trace_iter progs. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
2ec0616e870f0f2aa8353e0de057f0c2dc8d52d5. (May. 2020).

[21] BoRKmann, D. bpf: Fix incorrect verifier pruning due
to missing register precision taints. https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
71b547f561247897a0a14f3082730156c0533fed. (Apr. 2023).

[22] BoRKmann, D. bpf: Fix pointer arithmetic mask tight-
ening under state pruning. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
e042aa532c84d18ff13291d00620502ce7a38dda. (Jul. 2021).

[23] BoRKmann, D. bpf: Fix verifier jmp32 pruning decision
logic. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=fd675184fc7abfd1e1c52d23e8e900676b5a1c1a. (Feb.
2021).

[24] BoRKmann, D. bpf: Undo incorrect __reg_bound_offset32 handling.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef. (Mar.
2020).

[25] BoRKmann, D. bpf, verifier: further improve search pruning.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=07016151a446d25397b24588df4ed5cf777a69bb. (Aug.
2016).

[26] Bove, A., DybjeR, P., and NoRell, U. A brief overview of agda–
a functional language with dependent types. In International Con-
ference on Theorem Proving in Higher Order Logics (2009), Springer,
pp. 73–78.

[27] Cao, X., Patel, S., Lim, S. Y., Han, X., and PasieR, T. FetchBPF:
Customizable prefetching policies in linux with eBPF. In 2024
USENIX Annual Technical Conference (USENIX ATC 24) (2024),
pp. 369–378.

[28] Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. A. Lustre: a
declarative language for real-time programming. In Proceedings of
the 14th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages (1987), pp. 178–188.

[29] Chaignon, P. bpf: Fix incorrect state pruning for <8B spill/fill.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=345e004d023343d38088fdfea39688aa11e06ccf. (Dec.
2021).

[30] Coffman, E. G., ElphicK, M., and Shoshani, A. System deadlocks.
ACM Computing Surveys (CSUR) 3, 2 (1971), 67–78.

[31] CoRbet, J. A JIT for packet filters. https://lwn.net/Articles/437981/.
[32] CRee, E. bpf/verifier: fix bounds calculation on BPF_RSH.

https://github.com/aya-rs/aya/issues/100
https://github.com/aya-rs/aya/issues/100
https://github.com/aya-rs/aya/issues/546
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://github.com/leanprover/lean4/commits/master/src/kernel/type_checker.cpp
https://github.com/leanprover/lean4/commits/master/src/kernel/type_checker.cpp
https://github.com/libbpf/libbpf
https://github.com/aya-rs/aya/issues/521
https://github.com/aya-rs/aya/issues/521
https://github.com/ammkrn/nanoda_lib/
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://github.com/microsoft/WSL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18445
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18445
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490
https://lwn.net/Articles/1016674/
https://lwn.net/Articles/1016674/
https://lwn.net/Articles/1020664/
https://lwn.net/Articles/1020664/
https://lwn.net/Articles/1021825/
https://lwn.net/Articles/1021825/
https://github.com/cilium/cilium/commit/bfaef16f34851aada5189df2eaebce351dd2543e
https://github.com/cilium/cilium/commit/bfaef16f34851aada5189df2eaebce351dd2543e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=049c4e13714ecbca567b4d5f6d563f05d431c80e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=049c4e13714ecbca567b4d5f6d563f05d431c80e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=049c4e13714ecbca567b4d5f6d563f05d431c80e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2ec0616e870f0f2aa8353e0de057f0c2dc8d52d5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2ec0616e870f0f2aa8353e0de057f0c2dc8d52d5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2ec0616e870f0f2aa8353e0de057f0c2dc8d52d5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=71b547f561247897a0a14f3082730156c0533fed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=71b547f561247897a0a14f3082730156c0533fed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=71b547f561247897a0a14f3082730156c0533fed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e042aa532c84d18ff13291d00620502ce7a38dda
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e042aa532c84d18ff13291d00620502ce7a38dda
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e042aa532c84d18ff13291d00620502ce7a38dda
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fd675184fc7abfd1e1c52d23e8e900676b5a1c1a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fd675184fc7abfd1e1c52d23e8e900676b5a1c1a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=07016151a446d25397b24588df4ed5cf777a69bb
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=07016151a446d25397b24588df4ed5cf777a69bb
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=345e004d023343d38088fdfea39688aa11e06ccf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=345e004d023343d38088fdfea39688aa11e06ccf
https://lwn.net/Articles/437981/


PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Jin et al.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941. (Dec.
2017).

[33] CRee, E. bpf/verifier: track liveness for pruning. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=dc503a8ad98474ea0073a1c5c4d9f18cb8dd0dbf. (Aug.
2017).

[34] CRee, E. bpf/verifier: track signed and unsigned min/max values.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=b03c9f9fdc37dab81ea04d5dacdc5995d4c224c2. (Aug.
2017).

[35] CRee, E. bpf/verifier: when pruning a branch, ignore its write
marks. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=63f45f840634ab5fd71bbc07acff915277764068.
(Aug. 2017).

[36] CuRtsingeR, C., and BaRowy, D. W. Riker:Always-Correct and fast
incremental builds from simple specifications. In 2022 USENIX An-
nual Technical Conference (USENIX ATC 22) (2022), pp. 885–898.

[37] Decina, A. Minor tweaks to make the verifier’s
job easier. https://github.com/aya-rs/aya/commit/
2ac433449cdea32f10c8fc88218799995946032d. (Jul. 2022).

[38] Dwivedi, K. K. bpf: Fix state pruning for STACK_DYNPTR stack
slots. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=d6fefa1105dacc8a742cdcf2f4bfb501c9e61349. (Jan.
2023).

[39] Dwivedi, K. K., IyeR, R., and Kashyap, S. Fast, flexible, and practical
kernel extensions. In Proceedings of the ACM SIGOPS 30th Sympo-
sium on Operating Systems Principles (SOSP’24) (Nov. 2024).

[40] EbneR, G., UllRich, S., Roesch, J., Avigad, J., and de MouRa, L.
A metaprogramming framework for formal verification. Proc. ACM
Program. Lang. 1, ICFP (Aug. 2017).

[41] FuRia, C. A., MeyeR, B., and VeldeR, S. Loop invariants: Analysis,
classification, and examples. ACM Computing Surveys (CSUR) 46, 3
(2014), 1–51.

[42] Gaidis, A. J., AtlidaKis, V., and KemeRlis, V. P. SysXCHG: Refining
Privilege with Adaptive System Call Filters. In ACM Conference on
Computer and Communications Security (CCS) (2023).

[43] GeRhoRst, L., HeRzog, B., Reif, S., SchRÖdeR-PReiKschat, W., and
HÖnig, T. Anycall: Fast and flexible system-call aggregation. In Pro-
ceedings of the 11th Workshop on Programming Languages and Oper-
ating Systems (2021), pp. 1–8.

[44] Ghigoff, Y., Sopena, J., LazRi, K., Blin, A., and MulleR, G. BMC:
Accelerating Memcached using Safe In-kernel Caching and Pre-
stack Processing. In Proceedings of the 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’21) (Apr. 2021).

[45] GRaf, T. bpf: Fix verifier error when writing to
skb->cb[0]. https://github.com/cilium/cilium/commit/
1e25adb69b44573ecaea42803fff7312fbfe9372. (May. 2023).

[46] Guo, P. J., and EngleR, D. CDE: Using system call interposition to
automatically create portable software packages. In 2011 USENIX
Annual Technical Conference (USENIX ATC 11) (2011).

[47] Hoffmann, J., and Shao, Z. Automatic static cost analysis for par-
allel programs. In Proceedings of the 24th European Symposium on
Programming on Programming Languages and Systems - Volume 9032
(2015), Springer-Verlag, p. 132–157.

[48] HumphRies, J. T., Natu, N., Chaugule, A., Weisse, O., Rhoden,
B., Don, J., Rizzo, L., RombaKh, O., TuRneR, P., and KozyRaKis, C.
ghOSt: Fast & Flexible User-Space Delegation of Linux Scheduling.
In ACM Symposium on Operating Systems Principles (SOSP) (2021),
pp. 588–604.

[49] IO VisoR PRoject. BPF Compiler Collection (BCC). https://github.
com/iovisor/bcc.

[50] Jia, J., Qin, R., CRaun, M., LuKiyanov, E., Bansal, A., Phan, M., Le,

M. V., FRanKe, H., Jamjoom, H., Xu, T., andWilliams, D. Rex: Clos-
ing the Language-Verifier Gap with Safe and Usable Kernel Exten-
sions. In Proceedings of the 2025 USENIX Annual Technical Conference
(USENIX ATC’25) (July 2025).

[51] Jia, J., Sahu, R., Oswald, A., Williams, D., Le, M. V., and Xu, T.
Kernel extension verification is untenable. InWorkshop on Hot Topics
in Operating Systems (HotOS) (2023), pp. 150–157.

[52] Jose E. MaRchesi. eBPF support for GCC. https://gcc.gnu.org/
legacy-ml/gcc-patches/2019-08/msg01987.html.

[53] Kaffes, K., HumphRies, J. T., MaziÈRes, D., and KozyRaKis, C.
Syrup: User-Defined Scheduling Across the Stack. In ACM Sympo-
sium on Operating Systems Principles (SOSP) (2021), pp. 605–620.

[54] Kim, T., and Zeldovich, N. Practical and effective sandboxing
for non-root users. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13) (2013), pp. 139–144.

[55] Klein, G., Elphinstone, K., HeiseR, G., AndRonicK, J., CocK, D.,
DeRRin, P., ElKaduwe, D., EngelhaRdt, K., KolansKi, R., NoRRish,
M., Sewell, T., Tuch, H., andWinwood, S. sel4: formal verification
of an os kernel. SOSP ’09, Association for Computing Machinery,
p. 207–220.

[56] Koong, J. bpf: Add bpf_loop helper. https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
e6f2dd0f80674e9d5960337b3e9c2a242441b326.

[57] Koong, J. bpf: Add verifier support for dynptrs. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=97e03f521050c092919591e668107b3d69c5f426. (May.
2022).

[58] Kunen, K. Set Theory an Introduction to Independence Proofs, vol. 102.
Elsevier, 2014.

[59] Lattuada, A., Hance, T., Cho, C., BRun, M., Subasinghe, I., Zhou,
Y., Howell, J., PaRno, B., and Hawblitzel, C. Verus: Verifying
rust programs using linear ghost types. Proceedings of the ACM on
Programming Languages 7, OOPSLA1 (2023), 286–315.

[60] Lau, M. K. bpf: Support <8-byte scalar spill and refill.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=354e8f1970f821d4952458f77b1ab6c3eb24d530. (Sep.
2021).

[61] LeRoy, X., Blazy, S., KÄstneR, D., SchommeR, B., PisteR, M., and
FeRdinand, C. Compcert-a formally verified optimizing compiler. In
ERTS 2016: Embedded Real Time Software and Systems, 8th European
Congress (2016).

[62] Linux DevelopeRs. BPF Kernel Functions (kfuncs). https://docs.
kernel.org/bpf/kfuncs.html.

[63] Linux KeRnel. Softlockup detector and hardlockup detector
(aka nmi_watchdog). https://docs.kernel.org/admin-guide/lockup-
watchdogs.html.

[64] LLVM PRoject. LLVM 3.7 Release Notes. https://releases.llvm.org/
3.7.0/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-
in-this-release.

[65] Matei, A. bpf: Allow variable-offset stack access. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=01f810ace9ed37255f27608a0864abebccf0aab3. (Dec.
2023).

[66] Matei, A. bpf: Fix verification of indirect var-off stack ac-
cess. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=a833a17aeac73b33f79433d7cee68d5cafd71e4f. (Dec.
2023).

[67] Matei, A. bpf: Protect against int overflow for stack access
size. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=ecc6a2101840177e57c925c102d2d29f260d37c8. (Mar.
2024).

[68] mathlib Community, T. The Lean mathematical library. In Proceed-
ings of the 9th ACM SIGPLAN International Conference on Certified

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=dc503a8ad98474ea0073a1c5c4d9f18cb8dd0dbf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=dc503a8ad98474ea0073a1c5c4d9f18cb8dd0dbf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=dc503a8ad98474ea0073a1c5c4d9f18cb8dd0dbf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b03c9f9fdc37dab81ea04d5dacdc5995d4c224c2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b03c9f9fdc37dab81ea04d5dacdc5995d4c224c2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=63f45f840634ab5fd71bbc07acff915277764068
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=63f45f840634ab5fd71bbc07acff915277764068
https://github.com/aya-rs/aya/commit/2ac433449cdea32f10c8fc88218799995946032d
https://github.com/aya-rs/aya/commit/2ac433449cdea32f10c8fc88218799995946032d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d6fefa1105dacc8a742cdcf2f4bfb501c9e61349
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d6fefa1105dacc8a742cdcf2f4bfb501c9e61349
https://github.com/cilium/cilium/commit/1e25adb69b44573ecaea42803fff7312fbfe9372
https://github.com/cilium/cilium/commit/1e25adb69b44573ecaea42803fff7312fbfe9372
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://gcc.gnu.org/legacy-ml/gcc-patches/2019-08/msg01987.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2019-08/msg01987.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e6f2dd0f80674e9d5960337b3e9c2a242441b326
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e6f2dd0f80674e9d5960337b3e9c2a242441b326
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e6f2dd0f80674e9d5960337b3e9c2a242441b326
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97e03f521050c092919591e668107b3d69c5f426
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97e03f521050c092919591e668107b3d69c5f426
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=97e03f521050c092919591e668107b3d69c5f426
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=354e8f1970f821d4952458f77b1ab6c3eb24d530
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=354e8f1970f821d4952458f77b1ab6c3eb24d530
https://docs.kernel.org/bpf/kfuncs.html
https://docs.kernel.org/bpf/kfuncs.html
https://docs.kernel.org/admin-guide/lockup-watchdogs.html
https://docs.kernel.org/admin-guide/lockup-watchdogs.html
https://releases.llvm.org/3.7.0/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
https://releases.llvm.org/3.7.0/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
https://releases.llvm.org/3.7.0/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=01f810ace9ed37255f27608a0864abebccf0aab3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=01f810ace9ed37255f27608a0864abebccf0aab3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=01f810ace9ed37255f27608a0864abebccf0aab3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a833a17aeac73b33f79433d7cee68d5cafd71e4f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a833a17aeac73b33f79433d7cee68d5cafd71e4f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ecc6a2101840177e57c925c102d2d29f260d37c8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ecc6a2101840177e57c925c102d2d29f260d37c8


KLean: Extending Operating System Kernels with Lean PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

Programs and Proofs (New York, NY, USA, 2020), CPP 2020, Associa-
tion for Computing Machinery, p. 367–381.

[69] McCanne, S., and Jacobson, V. The BSD Packet Filter: ANewArchi-
tecture for User-level Packet Capture. In USENIX Winter Conference
(1993).

[70] McCaRthy, J., FetscheR, B., New, M. S., Feltey, D., and FindleR,
R. B. A coq library for internal verification of running-times. Science
of Computer Programming 164 (2018), 49–65.

[71] MolnaR, I., and van de Ven, A. Runtime locking correctness valida-
tor. https://www.kernel.org/doc/Documentation/locking/lockdep-
design.txt.

[72] MouRa, L. d., and UllRich, S. The lean 4 theorem prover and pro-
gramming language. In Automated Deduction – CADE 28 (Cham,
2021), A. Platzer and G. Sutcliffe, Eds., Springer International Pub-
lishing, pp. 625–635.

[73] NaKRyiKo, A. bpf: add support for open-coded iterator loops.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=06accc8779c1d558a5b5a21f2ac82b0c95827ddd.

[74] NaKRyiKo, A. bpf: decouple prune and jump points.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=bffdeaa8a5af7200b0e74c9d5a41167f86626a36. (Dec.
2022).

[75] Necula, G. C. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages (1997), pp. 106–119.

[76] Nelson, L., Wang, X., and ToRlaK, E. A proof-carrying approach
to building correct and flexible in-kernel verifiers. In Linux Plumbers
Conference (2021).

[77] NiKita ShiRoKov and Ranjeeth Dasineni. Open-sourcing Katran,
a scalable network load balancer. https://engineering.fb.com/2018/
05/22/open-source/open-sourcing-katran-a-scalable-network-
load-balancer/.

[78] ReimeRinK, D. bpf,test: Fix verifier issues in IPv6 BPF tests
when running locally. https://github.com/cilium/cilium/commit/
ceaa4c42b0101c69d82407046e8437942237edcb. (May. 2023).

[79] snaRKy developeRs. Ocaml dsl for verifiable computation. https:
//github.com/o1-labs/snarky.

[80] Song, Y. bpf: Add bpf_for_each_map_elem() helper.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=69c087ba6225b574afb6e505b72cb75242a3d844.

[81] Song, Y. bpf: Fix a verifier failure with xor. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=2921c90d471889242c24cff529043afb378937fa. (Aug.
2020).

[82] Song, Y. bpf: Provide better register bounds after jmp32 instruc-
tions. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=581738a681b6faae5725c2555439189ca81c0f1f. (Nov.
2019).

[83] StaRovoitov, A. bpf: add search pruning optimization to veri-
fier. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=f1bca824dabba4ffe8582f87ca587780befce7ad. (Sept.
2014).

[84] StaRovoitov, A. bpf: fix callees pruning callers. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=eea1c227b9e9bad295e8ef984004a9acf12bb68c. (Jun.
2019).

[85] StaRovoitov, A. bpf: introduce bounded loops. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=2589726d12a1b12eaaa93c7f1ea64287e383c7a5.

[86] StaRovoitov, A. bpf: introduce bpf_spin_lock. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=d83525ca62cf8ebe3271d14c36fb900c294274a2. (Jan.
2019).

[87] StaRovoitov, A. bpf: verifier (add docs). https://git.kernel.

org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
51580e798cb61b0fc63fa3aa6c5c975375aa0550. (Sept. 2014).

[88] StaRovoitov, A. precise scalar_value tracking. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=b5dc0163d8fd78e64a7e21f309cf932fda34353e. (Jun.
2019).

[89] Sun, H., and Su, Z. Lazy Abstraction Refinement with Proof. In
Linux Plumbers Conference (LPC’24). https://lpc.events/event/18/
contributions/1939/. (Sept. 2024).

[90] The Cilium AuthoRs. Cilium: eBPF-based Networking, Observabil-
ity, Security. https://cilium.io/.

[91] The Rocq Development Team. The Rocq Prover Reference Manual.
Inria, 2025. Version 9.0.0.

[92] UllRich, S., and de MouRa, L. ‘do’ unchained: embracing local im-
perativity in a purely functional language (functional pearl). Proc.
ACM Program. Lang. 6, ICFP (Aug. 2022).

[93] Vishwanathan, H., Shachnai, M., NaRayana, S., and Na-
gaRaKatte, S. Verifying the verifier: ebpf range analysis verifica-
tion. In Computer Aided Verification (2023), C. Enea and A. Lal, Eds.,
Springer Nature Switzerland, pp. 226–251.

[94] Williams, D., and Sahu, R. When bpf programs need to die: explor-
ing the design space for early bpf termination. In Linux Plumbers
Conference (2023).

[95] Yelam, A., Wu, K., Guo, Z., Yang, S., ShashidhaRa, R., Xu, W., No-
vaKović, S., SnoeRen, A. C., and Keeton, K. PageFlex: Flexible and
efficient user-space delegation of linux paging policies with eBPF. In
2025 USENIX Annual Technical Conference (USENIX ATC 25) (2025),
pp. 291–306.

[96] Zhong, Y., Li, H., Wu, Y. J., ZaRKadas, I., Tao, J., MesteRhazy, E.,
MaKRis, M., Yang, J., Tai, A., Stutsman, R., et al. XRP: In-Kernel
Storage Functions with eBPF. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2022), pp. 375–393.

[97] Zhou, C. bpf: Relax allowlist for css_task iter. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=3091b667498b0a212e760e1033e5f9b8c33a948f. (Oct.
2023).

[98] Zhou, Y., Wang, Z., DhaRanipRagada, S., and Yu, M. Electrode:
Accelerating distributed protocols with eBPF. In 20th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 23)
(2023), pp. 1391–1407.

[99] Zhou, Y., Xiang, X., Kiley, M., DhaRanipRagada, S., and Yu, M.
DINT: Fast In-Kernel distributed transactions with eBPF. In 21st
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 24) (Santa Clara, CA, Apr. 2024), USENIX Association,
pp. 401–417.

[100] ZingeRman, E. bpf: correct loop detection for iterators convergence.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=2a0992829ea3864939d917a5c7b48be6629c6217. (Oct.
2023).

[101] ZingeRman, E. bpf: exact states comparison for iterator convergence
checks. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=2793a8b015f7f1caadb9bce9c63dc659f7522676.
(Oct. 2023).

[102] ZingeRman, E. bpf: Fix for use-after-free bug in inline_bpf_loop.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=fb4e3b33e3e7f13befdf9ee232e34818c6cc5fb9. (Jun.
2022).

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=06accc8779c1d558a5b5a21f2ac82b0c95827ddd
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=06accc8779c1d558a5b5a21f2ac82b0c95827ddd
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bffdeaa8a5af7200b0e74c9d5a41167f86626a36
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bffdeaa8a5af7200b0e74c9d5a41167f86626a36
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://github.com/cilium/cilium/commit/ceaa4c42b0101c69d82407046e8437942237edcb
https://github.com/cilium/cilium/commit/ceaa4c42b0101c69d82407046e8437942237edcb
https://github.com/o1-labs/snarky
https://github.com/o1-labs/snarky
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69c087ba6225b574afb6e505b72cb75242a3d844
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69c087ba6225b574afb6e505b72cb75242a3d844
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2921c90d471889242c24cff529043afb378937fa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2921c90d471889242c24cff529043afb378937fa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2921c90d471889242c24cff529043afb378937fa
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=581738a681b6faae5725c2555439189ca81c0f1f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=581738a681b6faae5725c2555439189ca81c0f1f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f1bca824dabba4ffe8582f87ca587780befce7ad
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f1bca824dabba4ffe8582f87ca587780befce7ad
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=eea1c227b9e9bad295e8ef984004a9acf12bb68c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=eea1c227b9e9bad295e8ef984004a9acf12bb68c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=eea1c227b9e9bad295e8ef984004a9acf12bb68c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2589726d12a1b12eaaa93c7f1ea64287e383c7a5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2589726d12a1b12eaaa93c7f1ea64287e383c7a5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2589726d12a1b12eaaa93c7f1ea64287e383c7a5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d83525ca62cf8ebe3271d14c36fb900c294274a2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d83525ca62cf8ebe3271d14c36fb900c294274a2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d83525ca62cf8ebe3271d14c36fb900c294274a2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=51580e798cb61b0fc63fa3aa6c5c975375aa0550
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=51580e798cb61b0fc63fa3aa6c5c975375aa0550
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=51580e798cb61b0fc63fa3aa6c5c975375aa0550
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b5dc0163d8fd78e64a7e21f309cf932fda34353e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b5dc0163d8fd78e64a7e21f309cf932fda34353e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b5dc0163d8fd78e64a7e21f309cf932fda34353e
https://lpc.events/event/18/contributions/1939/
https://lpc.events/event/18/contributions/1939/
https://cilium.io/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3091b667498b0a212e760e1033e5f9b8c33a948f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3091b667498b0a212e760e1033e5f9b8c33a948f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3091b667498b0a212e760e1033e5f9b8c33a948f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2a0992829ea3864939d917a5c7b48be6629c6217
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2a0992829ea3864939d917a5c7b48be6629c6217
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2793a8b015f7f1caadb9bce9c63dc659f7522676
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2793a8b015f7f1caadb9bce9c63dc659f7522676
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fb4e3b33e3e7f13befdf9ee232e34818c6cc5fb9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fb4e3b33e3e7f13befdf9ee232e34818c6cc5fb9

	Abstract
	1 Introduction
	2 Background
	2.1 BPF and Safe OS Kernel Extension
	2.2 Calculus of Inductive Constructions and Lean

	3 Motivation
	3.1 Verifier Complexity
	3.2 Limited Programmability and Expressiveness

	4 Proposed Solution
	4.1 KLean: System Design
	4.2 Unlock Full Expressiveness

	5 Research Directions
	5.1 Improving KLean
	5.2 Advancing OS Kernel Extension Research

	6 Related Work
	7 Conclusion
	References

