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Abstract
Safe kernel extension is an extremely successful feature in
OS kernels with a plethora of interesting applications. It pro-
vides significant performance benefits by avoiding context
switching and data copying, without compromising the ker-
nel’s integrity due to its verifiable safety. The most mature
existing approach, namely BPF, verifies extension safety us-
ing sound abstract interpretation techniqueswith best effort
precision. Such design not only increases the kernel main-
tenance burden due to its complexity, but also restricts ex-
tension expressiveness due to its approximations. The core
of the problem, we argue, is the BPF verifier’s dual mandate
of precision and soundness in its safety analysis.

We propose KLean: a Lean-based kernel extension frame-
work that decouples safety reasoning, offloading the safety
proving responsibility to user space while only implement-
ing safety specification and checking in the kernel. KLean’s
design significantly reduces the burden for kernel mainte-
nance, while giving users the full expressiveness power of
Lean.We envision KLean to enable significant advancement
in safe kernel extension applications.

CCS Concepts: • Software and its engineering → Oper-
ating systems; Formal methods; Software safety.

Keywords: BPF, Verification, OS Kernels, Kernel extensions,
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1 Introduction
Verifiably safe OS kernel extensions are madly in need, as
indicated by the increasing popularity of BPF in areas like
tracing [49], networking [44, 77, 90, 98], storage [96], mem-
ory management [27, 95], and scheduling [48, 53]. The vi-
brant BPF mailing list has long been filled with questions
and feature requests.
Core to BPF’s design is its safety promise through static

verification. When a BPF program is loaded into the ker-
nel, the in-kernel BPF verifier performs abstract interpre-
tation on all possible execution paths (with search prun-
ing) and verifies a set of safety properties such as memory
safety and termination. However, the BPF verifier has sig-
nificantly increased in complexity since its original adop-
tion in Linux, leading to a long list of vulnerabilities [10–
13]. Moreover, the restrictions imposed by the verifier have
become constraining factors for BPF program expressive-
ness [39, 44, 50]. We argue that the current design requires
the BPF verifier to achieve high precision in a sound static
analysis algorithm, which is fundamentally difficult.
To address this issue, we propose KLean: a Lean frame-

work for implementing safe kernel extensions. Lean enables
the decoupling of the problem: it ensures safety verifica-
tion via its core type checker, allows expressive safety spec-
ification through its dependent type system, and most im-
portantly, enables offloading of the safety proving respon-
sibility completely to user space. Other Lean features also
make it suitable for safe kernel extension: (1) built-in, ex-
tensible proof support and tactics that simplify proof writ-
ing, (2) battery-included libraries and built-in optimization
mechanisms for efficient run-time performance, (3) power-
ful meta-programming infrastructure that enables domain-
specific language and proof automation.
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We foresee interesting challenges such as improving the
performance vs. TCB-size tradeoff, sound and precise re-
source consumption estimation, etc. KLean’s design will ex-
pand the domain of safe OS kernel extension, and open up
unprecedented opportunities for system research, including
efficient system call virtualization, complete datapath dele-
gation, KLean-aware compiler optimizations, and so much
more.

2 Background
2.1 BPF and Safe OS Kernel Extension
BPF [69] started as a simple domain-specific language to
filter packets for network monitoring applications, saving
CPU cycles on processing and delivering unnecessary pack-
ets to the user process. Since then, BPF has evolved into a
general-purpose safe kernel extension mechanism, with a
wide range of applications.

BPF programs are typicallywritten in high-level languages
such as C and Rust, then compiled into BPF bytecode. BPF
bytecode is defined similar to a RISC instruction set, en-
abling simpler JIT compilation [31]. Toolchains like BCC [49],
LLVM [64], and libbpf [5] help transform high-level lan-
guages to BPF bytecode, simplifying the development.

The safety of a BPF program is ensured by the BPF verifier,
which verifies safety properties — such as memory safety,
termination, type safety, and invariants related to locks and
memory allocation — on BPF bytecode. BPF programs that
pass the verifier are accepted by the kernel, and can then be
JIT-ed and attached to BPF hooks.The BPF hooks refer to the
kernel’s definition of how a BPF is registered and invoked at
specific extension points. Later, when execution reaches the
hook (e.g., a packet arrives), the BPF program is triggered
and executed, with a domain-specific data structure (dubbed
the context object) as the argument.

The kernel provides two other functionalities to BPF’s
runtime. BPF maps are a set of pre-defined data structures
(e.g., array, hash map) that store persistent state across BPF
invocations and communicatewith the user space.BPF helpers1
are native functions that can be invoked from BPF programs
to interact with a subset of kernel states, as well as im-
plementing features that cannot be easily verified, such as
loops and string manipulations.

2.2 Calculus of Inductive Constructions and Lean
The Calculus of Inductive Constructions (CIC), a family of
type theories allowing for dependent types, is recognized
for its use in verified programming. These type theories
are expressive enough to encode arbitrary mathematical
propositions as types. Languages based on the CIC, such as
Rocq [91], Lean [72], and Agda [26], permit users to write
programs that are correct by construction: they can write ar-
bitrarily detailed specifications of the observable behaviors
1For simplicity, both helpers [3] and kfuncs [62] are referred to as helpers.

of their programs and prove that these specifications are
met.
Unlike many frameworks for program verification, such

languages fully separate proof search from proof checking.
Users are expected to construct a proof term, typically in in-
teraction with untrusted language components and automa-
tion; this proof term is then checked by a small trusted core.
While determining whether an arbitrary specification holds
is an undecidable problem, checking whether a given proof
is correct is identical to type-checking a program and is de-
cidable and efficient.

Languages with this foundation and architecture are of-
ten classified as proof assistants, emphasizing proof-checking
over executable code. Lean 4 has recently gained recogni-
tion as a full-fledged functional programming language, fea-
turing a mature standard library, performant runtime, com-
piler producing reliable and optimized code, and significant
self-reflection capabilities [72]. Its “local imperativity” fea-
tures [92] allow programmers to write code with attention
to memory management while remaining in a functional,
verifiable fragment of the language. Lean’s core library and
mathematical library [68] contain powerful tactics to as-
sist users in constructing proof terms; with its metapro-
gramming framework [40], users can easily add their own
domain-specific proof automation.

3 Motivation
Theentire BPF subsystem depends on the BPF verifier: BPF’s
safety hinges on the verifier’s soundness, and BPF’s expres-
siveness on the verifier’s precision. However, some safety
properties are hard to analyze with a typical type-inference-
style algorithm. As a result, BPF struggles from not only ver-
ifier soundness issues due to its complex algorithm, but also
limited program expressiveness. In this section, we will dis-
cuss impact of BPF verification on kernel code complexity
and maintenance burden, as well as the expressiveness re-
striction on BPF programs.

3.1 Verifier Complexity
Memory safety has been a core guarantee since BPF’s incep-
tion. The verifier performs path-sensitive abstract interpre-
tation on the value range domain for scalars, used to deter-
mine whether a pointer offset is within bound of the object.
To support safety reasoning in specific code patterns, a con-
stant stream of precision improvement changes was added
over time. These include control-flow state refinement [82],
ALU precision improvement [81], state pruning and merg-
ing [88], signedness-related range improvement [34], and
memory operations precision improvement [57, 60, 65]. Due
to the challenging nature of these analyses, these changes
also led to bugs and security vulnerabilities [19, 21, 24, 29,
32, 38, 66], which sometimes are incorrectly fixed [67], or
caused the feature to be dropped entirely [24].
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Agni [93] aims to automatically verify abstract operator
soundness in BPF’s range analysis. But verifying full sound-
ness of the range analysis remains unsolved partly due to
state pruning [16]. Additionally, applying Agni to the evolv-
ing BPF verifier also has scalability challenges due to its use
of SMT solvers, which may increase the kernel maintenance
burden to develop efficiently verifiable kernel code [15, 16],
as the price for verified soundness.

Termination is another central safety property of BPF.
BPF previously enforced a no-jump-backward property com-
bined with a flat BPF program size limit. Over time, the need
for looping prevailed, and several looping features were
added [56, 73, 80, 85].This further complicates safety reason-
ing because the verifier essentially needs to find an appropri-
ate loop invariant to avoid having to reason about all pos-
sible looping iterations. However, generic automatic loop
invariant reasoning is very complex [17, 41]. In the BPF ver-
ifier, loop invariant reasoning, partly represented as state-
equivalence-based search pruning, is constantly updated for
precision [25, 33, 74, 83], which naturally introduces bugs
due to its complexity [20–23, 29, 35, 51, 84, 94, 97, 100–102].

3.2 Limited Programmability and Expressiveness
It is commonly reported that the verifier is unable to accept
programs that are relatively simple and safe [39, 50], creat-
ing programmability and usability limitations for BPF users.
Here, we discuss three notable manifestations of such lim-
itations: the restriction for memory access patterns, the re-
striction on locking, and the restriction on loop complexity.
These are a subset of the restrictions in BPF today, and more
will inevitably appear as more features are added.

Restrictions on memory access patterns. The typical
way for BPF programs to handle memory safety is through
path-sensitive range analysis. The verifier make many ap-
proximations during the analysis, including: (1) discarding
range information for content in BPF maps, (2) limiting nu-
merical reasoning ability, and (3) forbidding dynamic access
into stack or context objects. Under these constraints, de-
velopers are forced to perform additional checks and pro-
vide error handling logic at runtime, even if the program
was safe without them, degrading performance and adding
complexity [18, 37, 39, 45, 50, 78, 89]. Moreover, it is also
commonly reported that the restrictions force users writing
in high-level languages to use non-idiomatic code patterns
that are difficult to maintain or migrate [1, 2].

Restrictions on locking. BPF programs are allowed to
take spin locks to synchronize data accesses [86]. The ver-
ifier ensures that the program releases the lock on every
execution path. However, the verifier implements a harsh
solution to deadlocks — BPF programs can only a single
lock at a time. Although doing so effectively eliminates
the possibility of deadlocks [30], it also prevents develop-
ers from writing more complex synchronization patterns.

Such restriction is difficult to work with in contexts such as
BPF-extended scheduling, where BPF programs need to in-
teract with multiple data structures concurrently [14]. The
most promising systematic solution adds dynamic checks
and changes to the locking semantics [39].

Restrictions on loop complexity. The verifier imposes
limits on the number of instructions and branches it ex-
plores in an incoming program [87]. Programs exceeding
these limits will be rejected. Such complexity limits exist not
just to ensure program termination guarantee, but more im-
portantly, to prevent the verifier from running indefinitely
due to exponential path explosion.
As a result, developers of more complex BPF programs

frequently find themselves fighting against the complexity
limits. In many cases, developers have to refactor and split
their programs into smaller pieces connected with BPF tail
calls to pass verification, as shown by previous studies [50].
For example, the BPF Memcached Cache (BMC) [44] was
split into seven programs, while logically two are required:
networking ingress and egress.
The complexity limits also prevent BPF programs from

having complex loops with non-trivial invariants [6, 39]. In
BMC, the developers had to add an artificial packet length
limit to ensure the loop iterating over the packet bytes
would be accepted by the verifier [44].

4 Proposed Solution
4.1 KLean: System Design
We propose to use Lean as the safe kernel extension lan-
guage. The overall architecture is shown in Figure 1. When
the user wants to register a KLean extension on a KLean
hook, they provides a Lean object representing an extension,
whose type is specified by the hook. The type conformity
(including safety properties) is checked by the Lean type
checker.Then the checked Lean code will be invoked within
the kernel whenever the hook point is triggered. KLean
solves the limitations of static safety analysis by decompos-
ing the problem into safety specification, safety checking,
and safety proving. This decomposition simplifies the prob-
lem because it enables KLean to offload the most difficult
and application-specific part — safety proving — entirely to
user space.
Such offloading reduces the kernel’s maintenance burden

and lifts the restrictions on how users can write extension
programs, provided they can prove them safe.

Safety specification. An important part of KLean is the
interface specification between KLean and the kernel. Us-
ing Lean’s powerful type system, KLean will annotate the
KLean-kernel API (starting from BPF’s helper functions)
with type signatures that properly reflect the invariants for
kernel safety, including those handled by the BPF verifier
currently.We also envision the API to encodemore complex
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Figure 1. Overall architecture of KLean.

invariants (e.g., locking order), allowing the kernel to expose
lower-level APIs without wrapping them in additional run-
time checks.

Safety checking. The powerful type system of Lean re-
duces safety checking to just type checking, which can be
done by Lean’s type checker. Relative to its generality, Lean
type checker is very minimal. A Rust implementation of the
type checker comprises only 7500 lines of code [7]. More im-
portantly, based on well-studied mathematical theory, the
Lean type system and type checker change rarely and mini-
mally [4]. Therefore, KLean’s verifier code will put minimal
burden on OS kernel maintenance.

Safety proving. Towrite a safe KLean extension, the user
bears the burden of creating an extension that Lean type
checker will accept. Typically, this translates to writing an
executable Lean function and providing a proof that it sat-
isfies the safety properties encoded in the type requirement.
As a result, the user is no longer restricted to certain code
patterns, as long as they can provide a proof for the safety
properties, unleashing expressiveness and freedom in exten-
sion development. Although safety proofs can require extra
work from the users — which may be alleviated with proof
automation (§5.1) — it does not restrict expressiveness be-
cause virtually all safe programs can be proven safe.2

4.2 Unlock Full Expressiveness
Wenow concretely discuss howKLean can handle the safety
properties mentioned in Section 3.

2There is no guarantee that every safe program can be proven safe. But for
programs that humans are able to reason to be safe, there is every reason to
expect that the reasoning translates to Lean: for example, Lean’s Mathlib
library [68] has formalized a nontrivial portion of modern mathematics.

1 @[extern "k_read_array"]
2 opaque k_read_array (i : ℕ) (h: i < 16) : ℕ
3
4 theorem fermat_last_theorem (n a b c : ℕ)
5 (hn : 2 < n) (ha : 0 < a)
6 (hb : 0 < b) (hc : 0 < c)
7 : a ^ n + b ^ n ≠ c ^ n := by
8 -- Proved by Andrew Wiles and other mathematicians,
9 -- but the proof is too large to fit in the margin
10 done
11
12 structure PosInt where
13 val : ℕ
14 p : val > 0
15 -- other fields
16
17 def read_or_zero (n : ℕ) (a b c : PosInt) :
18 IO ℕ := do
19 if pred : a.val ^ n + b.val ^ n = c.val ^ n then
20 let x := k_read_array n (by
21 apply Nat.gt_of_not_le
22 intro n_gt_16
23 have n_gt_2 : n > 2 :=
24 Nat.lt_of_le_of_lt (by decide) n_gt_16
25 apply fermat_last_theorem n a.val b.val c.val
26 n_gt_2 a.p b.p c.p
27 exact pred
28 )
29 return x
30 else
31 return 0

Listing 1. Proving k_read_array’s range requirement us-
ing Fermat’s last theorem.

ArbitraryRangeReasoning. Range requirement is com-
monly needed to ensure memory safety. In Listing 1 we
show a hypothetical example where a kernel API k_read_ ⌋
array requires the index argument to be less than 16. In
Lean, this property can be encoded as a proof argument h for
proposition i < 16, along side the index argument i. Func-
tion read_or_zero takes one natural number 𝑛 and three
positive integers 𝑎, 𝑏, and 𝑐, only calling k_read_array
with 𝑛 if 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 . According to Fermat’s last theorem,
𝑛 < 3 is always true when such condition holds. Therefore
the call is memory safe without needing additional checks.
Such guarantee cannot be easily deduced by existing BPF
infrastructure because (1) it is based on range property for
composite data type PosInt, and (2) it has (extremely) non-
trivial algebraic relations between variables that leads to the
range limit on 𝑛.

KLean can admit this program because Lean’s proof lan-
guage is expressive enough to specify reasoning as complex
as Fermat’s last theorem (or other simpler safety proofs).

Importantly, all proofs (k_read_array’s h argument, p
field in PosInt, and the entire proof between Line 20–28)
are erased at runtime, meaning that the complex proof rea-
soning does not impact runtime performance at all. Apart
from performance benefits, static reasoning is also preferred
over dynamic checking because kernel error handling can
sometimes be difficult (e.g., holding a lock with inconsistent
state changes).
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Precise Locking Specification. BPF’s current approach
to deadlock-freedom is to only allow one lock held at any
point. It is significantly more restrictive than the actual in-
variant the kernel maintains [71]: there is a strict global ac-
quisition order between lock classes, and if a process wishes
to hold multiple locks, they must be acquired in that order.

KLean can relax BPF’s current restriction by precisely
specifying such an invariant. To specify this property, KLean
will first define a partial order between locks in a KLean ex-
tension. Then we can define the locking invariant by speci-
fying properties over the locking operation history.

For example, in Listing 2, the KLean hook defines its de-
sired KLean extension as type LockSafeProg, which in-
cludes two parts: prog that represents the actual program,
and p_order that proves its lock acquisition order.
The executable prog will interact with the kernel states

through the KStateMmonad, an abstract class whose defini-
tion roughly corresponds to the available KLean-kernel in-
terfaces (analogous to BPF helpers). KStateM can be instan-
tiated with RealKStateMmonad, where the interface is im-
plemented by actual helpers, or LockTraceStateMmonad,
where the interface is implemented by stubs that trace the
locking operations. The p_order is a proof that specifies if
prog is plugged in with LockTraceStateM, the lock his-
tory it generates follows the lock acquisition order.

When the entire LockSafeProg is attached, the KLean
hook extracts the executable function prog and instantiates
it with RealKStateM, such that it will interact with the
real environment. The entire proof reasoning, including the
traced execution, proof over the locking traces, along with
other proof components, will be erased at runtime, and no
performance overhead is incurred.

Loop reasoning. Reasoning about loops or recursion does
not add significant difficulty for KLean. The user can use
Lean’s type system to encode loop invariants or inductive
hypotheses explicitly, without relying on implicit inference.

Termination is slightlymore complicated.Well-typed Lean
function always terminates, because Lean only allows well-
founded recursions [58]. Therefore, the termination prob-
lem seems to be resolved for free. However, there is a cru-
cial subtlety that makes this the more challenging prop-
erty to specify: Although the OS kernel needs to avoid in-
finite loops, which is guaranteed by Lean automatically, it
is also strongly desired for functions not to run too long in
a preemption-disabled or interrupt-disabled context [63]. In
fact, such problem exists in BPF as well: helper-based loops
can cause significant stalling [51, 94].
Lean’s type system, by design, cannot distinguish between

two functions with the same input-output relations, mean-
ing that execution time cannot be reasoned purely using
Lean’s type checker. We propose to use a hybrid approach
of monad-based modeling [70] and an external property
checker performing additional static analysis [47] external

1 section open KStateM
2 def myprog {m : Type → Type} [Monad m] [KStateM m]
3 (n : ℕ) : m Unit := do
4 lock 1
5 let n ← get_v
6 if n > 5 then
7 lock 3
8 set_v n+1
9 unlock 3
10 unlock 1
11 end
12
13 theorem myprog_lock_in_order : ∀ (s : KState),
14 strictlyOrdered ((myprog TraceKStateM).run s).trace :=
15 -- proof omitted
16
17 structure LockSafeProg where
18 -- A program that interact with kernel state
19 -- defined by the monad
20 prog (m : Type → Type) [Monad m] [KStateM m] : m Unit
21 -- For any input state, prog's lock operation
22 -- satisfies the ordering condition
23 p_order (s : KState):
24 strictlyOrdered ((prog TracedKStateM).run s).trace
25 -- omitting other safety properties
26
27 def hookTerm : LockSafeProg :=
28 LockSafeProg.mk myprog myprog_lock_in_order
29 def hookRun : RealKStateM Unit := hookTerm.prog RealKStateM

Listing 2. Specifying a strict lock acquisition order over all
possible execution traces in KLean.

to Lean. Such design allows fine-grain user control of the
reasoning while preventing malicious user extensions from
escaping the resource accounting.

5 Research Directions
5.1 Improving KLean
We have shown that KLean provides major benefits over ex-
isting BPF infrastructure. However, BPF still has some ben-
efits over KLean’s design, and more research can be done to
close the gap.

Improving trust-performance trade-off. AlthoughBPF’s
verifier can be limiting for generic code patterns, for the
most prominent BPF programs that the verifier targets, BPF
can have better performance. This is because BPF programs
are already optimized by the compiler [52, 64] before being
verified and loaded into the kernel.

Lean is designed with performance in mind. However,
adding optimizations post-verification would expand the
TCB (trusted computing base). As shown in Figure 2, Lean
currently has three evaluation modes with different trade-
offs. Lean’s most trusted execution is its core interpreter.
However, it can be too slow for ordinary programs (e.g.,
when they include non-structural recursions). The next op-
tion is native-extension-accelerated interpreter, where se-
lected Lean types (e.g., vectors, hash tables) have a native
mirror implementation in C++. These extensions make the
interpretation much more efficient, at the cost of trusting
the correctness of their native implementation. Lastly, Lean
supports compilation. It first runs a Lean-to-C compiler
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Figure 2. Lean execution model and trade-offs.

written in Lean, then compiles the C code using a bundled
LLVM compiler. Compilation comes at the cost of trusting
the entire Lean-to-C compiler and LLVM compiler under po-
tentially malicious input, which is beyond the capability of
typical kernel maintaining groups.

Ideally, we would create a verified Lean compiler that
maintains all the safety guarantees while producing fast
native code. Before that is possible, we propose that the
first version of KLean should adopt Lean’s accelerated in-
terpreter execution model. We also propose two research
directions to improve the trust-performance trade-off: (1)
Modify the Lean-to-C compiler to target the C dialect sup-
ported by verified C compilers like CompCert [61], and (2) a
baseline just-in-time compilation using boxed Lean objects
with type- and hint-guided inlining and specialization.

DSL and proof automation. One benefit of BPF, despite
confusion and problems [50], is its automated safety reason-
ing. If developers follow a restricted code pattern, safety can
be proven without additional effort.

In the general scenario, finding safety proofs automati-
cally is undecidable. However, it is possible to bring BPF’s
philosophy into KLean. For scenarios where a restricted lan-
guage suffices, such as regular expression or circuit-like lan-
guage [28, 79], Lean’s powerful meta-programming capabil-
ity can define such a language as a DSL within Lean and
automatically derive safety proofs. Because the DSLs still
translate to Lean, the kernel-side infrastructure does not
need any changes to support new DSLs.

It is also possible to create DSLs like BPF with best-effort
proof automation, providing a similar interface to existing
BPF development (à la Nelson et al. [76]). Then, the origi-
nal verification strategy of the BPF verifier can be added as
proof tactics, allowing the user to fill in the gaps when the
BPF verifier algorithm fails. Importantly, the verification en-
gine for BPF can now reside in user space, allowing it to
be freely extended without changing the safety assurances
provided by KLean. Instead, if a bug were introduced to the

BPF verifier tactic, KLean would simply reject the generated
proof, eliminating the risk to kernel safety.

5.2 Advancing OS Kernel Extension Research
KLean will enable a wide range of operating-system-related
research projects that can be difficult to efficiently imple-
ment in BPF due to its various restrictions. We will discuss
some preliminary ideas that demonstrate such potential.

Efficient system call virtualization. A class of systems,
including MBOX [54], CDE [46], and others [9, 36, 42],
modifies system call semantics to enhance security, visi-
bility, performance, and compatibility in off-the-shelf soft-
ware.These systems transform, record, or block system calls
to achieve their objectives. However, they either require
kernel changes or introduce unnecessary overhead using
process-level tracing [8], which induce additional context
switching and data-copying because of the extra round trip
on each system call.

With KLean, it will be possible to implement system call
virtualization: customize system call semantics by building
KLean extensions on top of the current kernel. Research sys-
tems, in the same class as MBOX and CDE, could be imple-
mented in this manner, getting the best of both worlds.

Complete data-path delegation. Many applications [44,
98] with service-based architecture use BPF to speed up
their fast-path processing, avoiding excessive context switch-
ing and data-copying. However, due to BPF’s verifier restric-
tions, much of the complex request handling logic still has
to remain in user space. With KLean’s much more powerful
safety and termination verification capabilities, we envision
that it is feasible to delegate entire data paths to the ker-
nel without sacrificing any safety, while only keeping the
control-path management in the user space process.

KLean-aware compiler optimization. Past research on
BPF-enhanced networking [98, 99] and storage [96] has
shown the power of kernel extension on data-intensive tasks.
Leveraging KLean’s expressiveness, we propose to investi-
gate a opportunistic compiler optimization: transforming
applications snippets into kernel extensions, automatically
improving their performance without sacrificing safety.
For instance, applied to distributed or middlebox systems,

the compiler can try to identify network-heavy code snip-
pets that do not expose intermediate results with the rest of
the system. Then the optimization will amalgamate the sys-
tem calls (similar to Anycall [43]) and transform them into
KLean extensions. Such opportunistic optimization, guided
by heuristics and dynamic profiling, can improve network
performance automatically while allowing developers to
program with more focus on the logical abstraction.
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6 Related Work
Requiring proofs for the safety of kernel extensions is not
new. In fact, safe kernel extensions for packet filtering are
one of themain proposed use cases for proof-carrying code [75].
Building on decades of advances in formal verification in
theory and software systems, KLean offers more powerful
and well-defined specification and proving capabilites.

Verus [59] is a verification framework that enables speci-
fying and proving properties about Rust programs, utilizing
a SMT solver for its proof checking. KLean chooses Lean be-
cause proof terms are first class construct in the language,
which enables clear and simple kernel-user interface design.

Rex [50] proposes an alternative safe kernel extension
scheme based on Rust. It simplifies safety verification by
leveraging Rust’s type system and safety guarantees. Un-
like KLean, however, Rex cannot easily specify more cus-
tom safety properties without extending its core. For exam-
ple, Rex cannot enforce complex invariants such as locking
order and termination without runtime components.
Formally verified operating systems such as seL4 [55] aim

to improve kernel reliability with formal verification. KLean
complements this effort by enabling run-time extensions
to be formally verified. We also envision KLean to enable
more kernel development in the form of safe kernel exten-
sions, achieving partial verification in giant monolithic ker-
nels like Linux.

7 Conclusion
We propose KLean, a Lean framework for implementing
safe kernel extensions, leveraging the power of a depen-
dent type proof assistant. Compared to BPF, the existing
approach, KLean enables the decoupling and offloading of
safety proving responsibility to userspace, reducing kernel
maintenence burden and improving extension expressive-
ness.
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