Numerical Proofs in Nonlinear Control

Sicun Gao, UCSD

inear control working

Nonl

=

N
2

Nonlinear control not working

v ——

LI MR FARPLEY ¢ IRPLEX

P s S— .—-—-ﬁ
-—+——- o’
- r ‘ \ *.J -
%n!*" ’ !r {=is)
A\ 4
TS
.ﬂawhﬁ ‘ ;
_a | 'r—- - -
; - —

[0
[
B -

=

234 05/06/2015

Dynamical systems are simple loops

J(x, u(x))ds
0

x(1) = x(0) + J

flz,u(x))-dt +x

t =1+ dt

end while

while true do
€

S AAAA A A A A AN A s

NN N N N N N A

l'l'l'lVl'l'l'IVlVlVl"l‘\'\V\‘\‘\\

——— e e e e T

2.5
0.5}

Dynamical systems are simple loops

o M (0)6 + C(6,6)8 + 7(0) = Bu,
0 =101,0,...,0,] €cR"ueR"
M((g) — [aij COS ((9] — 91)] ,M ((9) c R™*™
0(9,9) — —aq;jéj Sin (93 — (92) ,0(9,9) - Ran’
7(9) = —bz Sin (92] ,G(@) - Rn,

B=[11,...,1]"
Ai5 = Qg5 = mj&-ﬁcj —|—€Z€j ZZ:j—I—l me, 1l <1< 7<n

b; = (mifcﬂrfi Z mk) g,1 <1< n,

k=141

Dynamical systems are simple loops

time =0.1s

Properties we care about

» Safety: do not reach bad states
‘v’xo‘v’t‘v’xt(xt =F (xp, 1) — safe(xt))
» Stability (Liveness): eventually reach good states

original state disturbed state final state after a
few oscillations

Properties we care about

» Safety: do not reach bad states
‘v’xo‘v’t‘v’xt<xt = F (xp, 1) = safe(xt))
» Stability (Liveness-ish): eventually reach good states

Ve Elé‘v’xo‘v’t‘v’xt(ol < 6 A x, = F.(xy, 1)

S (el < & A lim x, = 0))

[— 0

Recall: invariants for programs

For a discrete loop of the transition relation 7T(x, x')

. Safety (core part)
(Inv(x) A T(x, x’)) — Inv(x’)

* Termination (core part)

T(x,x) — (Rank(x) > Rank(x’))

Inductive proofs over Rn

» Safety: barrier functions, differential invariants

B(x)=0- V,:Bx) <0

v * Lie Derivative
] S
V,V(x) = Z — = Z—f(x)

Inductive proofs over Rn

» Stability: Lyapunov functions

/ / /
/ & Y
M M % 7

original state disturbed state final state after a
few oscillations

Find an “energy” landscape that forces stabilization
(same as ranking function for termination)

Inductive proofs over Rn

» Stability (Lyapunov functions)

—— V(0) = 0, V(0) = 0

i

|
' - -
| _--C- -#
A »° <
i\ »
] - -_>-------‘
]
\
\ - - -
| -
L) -
{ G 14 -0 i

V(x) > 0,Vx € D\{0)

R

V V(x) < 0,Vx € D\{0}

Inductive proofs over Rn

+ Stability: Lyapunov functions

- = Valid region

- = Valid region
L 0.00
[—0.05
-0.10
t-015"
F—0.20
F—0.25
"—0.30

/ I 0.04

Difficulty due to nonlinearity

» For discrete programs, finding invariants is always
hard, but checking them is easy

(Inv(x) A T(x, x’)) — Inv(x’)
T(x,x") — <Rank(x) > Rank(x’)>

» Just encode the negations of these as SMT and
hope for an unsat answer

Difficulty due to nonlinearity

* In the continuous case, even checking the inductive
conditions is very hard

* First-order theory over nonlinear real arithmetic

VfV(x) <0, Vxe D CR"

Th((lR, <,{+,X })) is decidable but doubly-exponential

Ths, (R, <, {sin, +, })) is undecidable

Delta-decisions

» FOL over reals is not that scary if we can allow
some numerical errors in the decisions

 Delta-decisions over reals [Gao-Avigad-Clarke, LICS’12]

» Can deal with any formula in (R, <, %) where #
is the set of all Type 2 computable functions

Type 2 Computability

* Manipulate real numbers through natural encodings
as functions over the integers (e.g. Cauchy sequences)

* A real function is Type 2 computable if an algorithm
can approximate it up to arbitrary finite precisions
(effective continuity)

G’ ® ° °
* # contains polynomials, sin, cos, exp, ODEs, etc.

(pretty much all the functions we need in engineering)

Delta-decisions

* Delta-weakening: put a formula in a positive normal form

and relax all f(x) > 0to f(x) > — 6 where 6 € Q7

» Example: dx(x = 0) is relaxed to Jx(| x| < 0).

* We say a formula is delta-satisfiable if its delta-weakening
is satisfiable. The delta-decision problem asks if a formula
is unsat or delta-sat.

Delta-decisions

» Theorem: £, 4 formulas are delta-decidable over any
compact domain.

* Theorem: The complexity of delta-deciding these formulas
is the same as their Boolean counterparts.

 Complexity results for free: e.g., global multi-objective
disjunctive nonlinear optimization is -complete (NPNF).

Delta-decisions

* In practice, delta-decisions are all we need for
many problems in verification, optimization, etc.

* Reachability/Safety questions can be encoded,
with answers “safe” or “not robustly-safe” (a
delta-perturbation makes the system unsafe)

« dReal, dReach, etc.

Difficulty with induction

» However, induction fails under numerical errors!

B<0 B(x)=0- V,:Bx) <0

* dReal always gives
spurious counterexamples

Difficulty with induction

» However, induction fails under numerical errors!

.' ---—]-—----: V(x) > 0,Vx € D\{0}

va(x) < 0,Vx € D\{0}

V(0) = 0,V(0) =

Difficulty with induction

» But again, precise checking is unrealistic (high
nonlinearity, disturbances,...)

2
p =c1 2@1\/£ — <£> — (63 + cacap + cscap” + CGCgp)

C11 C11

sy (c3 + cacap + csCap” + CoCoP B T)
c13(Cs + caCaPest + cscap?,, + coCapest)(1 + 1+ c1a(r — ci16))

2
. L N D D 92 2
Pest = C1 (2u1 \/_011 — (_C11> — C13 (63 T C4C2Pest T C5C2Pest T C662pest)>

”.L. = 015(T — 616)

(Example: powertrain control system)

Our fix to this problem

* We redefine the inductive proof rules over
continuous domains to robustify them

Epsilon-Lyapunov and Epsilon-Barrier functions

[Gao et al. CAV'19]

Our fix to this problem

* Three robust proof rules (epsilon-inductive
conditions) for stability and safety

* For any epsilon, there exists a bound D, such
that for any delta<D, delta-decision
procedures are sound and complete for
checking the epsilon-invariance conditions

Epsilon-Stability

* In practice, we can allow the system to oscillate
within an epsilon-ball around the origin

€0

V'<0 .

Relaxing Stability and Strengthening LF

* Relax stability to allow small perturbation
(epsilon-stability)

» Strengthen Lyapunov conditions to allow small
numerical errors (epsilon-Lyapunov)

* Prove epsilon-Lyapunov implies epsilon-stability

* Prove epsilon-delta completeness

Epsilon-Stability

* Relaxation: allow the system to oscillate
within an epsilon-ball around the origin

Stable(f) =df \V/(O’OO)TH(O’OO)5VD$Q\VI[O’OO)15(Hmou <0 — HF($O,t)H < 7')

Stable. (f) =g v[&oo)ﬂ(@vo@W%Owoa@t(onH <& = | F(zo,1)| < T)

|

the only difference

Epsilon-Lyapunov functions

* Extend point-based requirements to neighborhoods

‘_.:f:----;),-.. IRTLLARRRREED V Z o
> o
ViV <0 va < —
.................. j .." ..0‘ k““‘ |

....i k"“ 8 : V S /B “‘
f=0-" AR >\{: f
V=0

° .

* . L 4
] . - .
L] . L}
""" s g gaunsnt® ...Ill-“

Lyapunov Epsilon-Lyapunov

Epsilon-Lyapunov functions

* Extend point-based requirements to neighborhoods

fo V Z)
> [
ViV <0 ViV —
.................. j ." ..0‘ k““‘ |

a ke e Vsp-
f=0-" AR >\{: f
V=0

° .

* . L 4
] . - .
L] . L}
""" s g gaunsnt® ...Ill-“

Lyapunov Epsilon-Lyapunov

Epsilon-Lyapunov functions

* Extend point-based requirements to neighborhoods

LF(£,V) =4 (V(0) = 0) A (£(0) = 0) AYPMOYy (V(a:) > 0AV,V(z) < o)

LF.(f, V) =4 30)e'3(0:00)3(0:0) 35(0,00)
\V/D\Bex(v(x) Zﬁ /\VBs/ﬂf(V(Qf) SE
APP\E (VY (@) <)

Epsilon-Lyapunov functions

Theorem 1. If there exists an e-Lyapunov function V' for a dynamaical system
defined by f, then the system is e-stable. Namely, LF.(f,V) — Stable.(f).

Theorem 2 (Soundness). If a d-complete decision procedure confirms that
LF.(f, V) is true then V 1is indeed an e-Lyapunov function, and f is e-stable.

Theorem 3 (Relative Completeness). For any e € R, if LF.(f, V) is true
then there exists 0 € Q. such that any 0-complete decision procedure must return

that LF.(f, V') is true.

» g \
tttt
.
*
.

. - .
. .

Safety and epsilon-barrier functions

» Similarly, we define two robust barrier function
conditions that are stronger, sufficient for the
normal notion of safety

* Prove epsilon-delta completeness

Safety and epsilon-barrier functions

* Ensure that the system goes back into the
invariant set “near” the boundary

Type 1 e-Barrier Type 2 e-Barrier

Safety and epsilon-barrier functions

Type 1:
Barrier.(f, init, B) =4 VD:C(init() — B(x)

)

< -
A0y (=—¢ = VyB(z) < ’Y)
Type 2:
Barrierr . (f, init, B) =g v%(init() > B(x) < 5)
A 3<0»€1g*v%v[0=T1t((B(x) — &) = B(F(x,1)) < —g*)

A 3(€’°O)€’VD:U((B(:I;) — &) = B(F(2,T)) < —5’)

ier functions

-barr

ilon

Safety and eps

init, B).

(f,

, B) — Safe(f,

it, B) — Safe

Barrier.(f,in

. For any e € R,

Theorem 4

init, B).

Init

Theorem 6. For any T,c € R, Barrierp .(f,

init, B)

Theorem 7. For any ¢ € R, there exists § € Q, such that Barrierr . (f,

1s a 0-robust formula.

=0.14

0 Levelset at t

e — — <<~~~

1.0 Levelset
-0.1 Levelset
0.0 Levelset

B(x)
= = Forward Image of B(x)

—-=—=-Forward Image of B(x)

0.28
0.42

0 Levelset at t

0 Levelset at t

- Forward Image of B(x)

1.5

0.5

—B(X)
| —BK

|

1.5F
1
5

N

=90

—= Vector Field
= = Limit Cycle

—-=-7zPz
—2z'Pz
1

110

TR
L NN (AN

(AR

1

\
TSN
R

VAL L VL

-

\\\\\
NN

A \\
S/ AN

SN =l

. == \\\\\\

VI PIEEEEEAN Nagipier——
1 1 1

ST
.\ BRRERERE

st T
srrrt F

45&\\\\\«\\\\“\\\
\\
N\ - - s\\\\\w\\-\\ 777

Al ~— o o ' — '
1

Experiments (various nonlinear systems)

Example o) B v £ g’ Time (s)
T.R. Van der Pol 2.10x10™%** 1.70x107*°* 107*> 10~ '* 5x107'° 0.05
Norm. Pend. 7.07x107% 3.97x107** 107°° 107'* 5x107'° 0.01
Moore-Greitzer 2.95x10~" 2.55x107*° 1072 107'® b5x107H 0.04

Table 1: Results for the e-Lyapunov functions. Each Lyapunov function is of
the form 2! Pz, where z is a vector of monomials over the state variables. We
report the constant values satisfying the e-Lyapunov conditions, and the time
that verification of each example takes (in seconds).

Example 14 3 ol degree(z) size of P Time (s)
T.R. Van der Pol 90 107° 107° 3 9x9 6.47
Norm. Pend. [0.1,10) 107* 1072 1 2 X 2 0.08
Moore-Greitzer (1.0,10) 107" 107! 4 5x5 13.80
PTC 0.01 107° 107° 2 14 x 14 428.75

Experiments (powertrain control)

Example 14 £ Y degree(z) size of P Time (s)

PTC 0.01 107° 107° 2 14 x 14 428.75

2
b = 2@1\/£ _ (ﬁ) — (3 + cacap + cscap” + cocap)

C11 C11

| (c3 + cacap + cscap® + ceclp)
r =4 5 5 : —r
c13(cs 4+ cacopest + cscap=,, + c6CoPest)(1 + 1+ cra(r — c16))

2
. R 2 2
Pest = C1 (2u1 \/—Cfl — (—Ci) — C13 (63 T C4C2Pest T C5C2Pest T C602pest)>

g — 615(7“ — 616)

From verification to synthesis

* Once the proof rules can be checked, we can
further automate control design.

dpdqVx ©(f, u(p, x), V(g, x))

* Find parameters for control u(p, x) and proof
certificate V(g, x) so that the inductive
conditions in @ are true over all states.

From verification to synthesis

dpdqVx O(f, u(p,x), V(q, X))

* In general we can try solving these formulas in
the delta-decision framework. [Kong et al. CAV’18]

» But it is very hard to scale, because p and
especially g can be very high-dimensional.

From verification to synthesis

dp3dqVx O(f, u(p, x), V(gq, X))

* We need cheap algorithms to search for p and q.
* We can often afford full SMT solving over x.

* Also, the form of u and V matter a lot.

From verification to synthesis

dp3dqVx O(f, u(p, x), V(gq, X))

* The standard approach is to assume V is a

sum-of-squares polynomial and the search can
be done through semidefinite programming.

* |In pI'CICﬁCG, it is very brittle. (checking rarely passes)

Crazy attempt: use neural networks

dp3dqVx O(f, u(p, x), V(q, X))

* Instead of asking V to be a polynomial, let it
be a neural network.

« Use the verifier/falsifier to enforce the
inductive conditions and produce training sets.

[Chang et al. NeurlPS’19]

Crazy attempt: use neural networks

Require the neural network V to satisty the inductive
conditions on samples and counterexamples. Just use
cheap gradient descent.

Lyapunov Function — = Valid region

& 9

/

1
2
3
4
5
6
7
8
9

Crazy attempt: use neural networks

Neural Network

State Vectors y _,§O< O O —p Candidate v,

Initial Parameters uwor)
N~
A Or—10

Learning and Tuning

\ 4
Counterexample &4— SMT Solver

Vg is proved to be a valid lyapunov function

Crazy attempt: use neural networks

Quite amazingly it worked on many hard examples.

Region of Attraction

0.0180
?I:I NN
\ ~—1 LQR

1 Valid Regio - 0.0165

- 0.0150

- 0.0135

- 0.0120

- 0.0105

- 0.0090

0.0075

(humanoid balancing)

Crazy attempt: use neural networks

time =0.1s

(humanoid balancing)

Crazy attempt: use neural networks

Quite amazingly it worked on many hard examples.

Region of Attraction

0.8 - o 0.72
A i G — NN
064 —=I LQR - 0.64
' [Valid Region
O \\ ~{ - 0.56
~ \ \ - 0.48
3 \\\
= N\
§ V \\ \\\ \ - 0.40
5 ~))
@ A\~ - 0.32
z ‘.
- 0.24
V/a - 0.16
- 0.08
> —-0.8 L T T i Wﬁn; 7%- — T T 0.00
X -0.8 -0.6 -04 -0.2 0.0 0.2 0.4 0.6 0.8

Distance error

(wheeled vehicle path following)

use neural networks

Crazy attempt

Importantly, it improves previously known RoA.

Angle(rad)

Conclusion

* For core nonlinear control problems, we can
fully automate proofs and designs through
reasoning engines and formal tools.

* Improve standard control methods both in
performance and reliability guarantees.

* Numerical and probabilistic methods are
powerful when their formal basis is established.

Thank youl!

RrLex, [FITOME FAIRPLEX

