
Towards an
Optimizing Compiler for

Numerical Kernels

Eva Darulova
eva@mpi-sws.org

joint work with: Heiko Becker, Anastasiia Izycheva, Debasmita Lohar,
Viktor Kuncak, Magnus Myreen, Sylvie Putot, Eric Goubault, Helmut Seidl

Photo by Sebastian Bruggisser

mailto:eva@mpi-sws.org

Resources are Limited
Suppose you want to implement a heartbeat monitor:

Implementation

limited resources:
‣ noisy inputs
‣ finite-precision arithmetic

Design

infinite resources:
‣ perfect inputs
‣ continuous arithmetic

inspired from: A Methodology for Embedded Classification of Heartbeats Using Random Projections, DATE’13

-3 -2 -1 0 1 2 3

-1

0

1

2

3

4

5

6

7

-3 -2 -1 0 1 2 3

0

1

2

3

4

5

6

7

Approximations

accuracy

efficiency

Approximations

accuracy

efficiency

Navigating the Tradeoff is Hard!

Programming with Approximations
state-of-the-art

Embedded systems and scientific computing
‣ manual
‣ costly
‣ error-prone

Programming languages
‣ automated

‣ sound

‣ limited point solutions

Vision: 'Approximating Compiler'

ideal real-valued program
with accuracy & resource spec

approximate finite-precision program
with correctness certificate

automatically

real-valued specification
with transcendental functions

Today

fixed-point/floating-point implementation
with polynomial approximations

Da

isy

Overview

real-valued specification
with transcendental functions

fixed-point/floating-point implementation
with polynomial approximations

Da

isy

Accuracy verification

‣ arithmetic

‣ conditionals

Optimization

‣ finite-precision

‣ elementary functions

Overview

Accuracy verification

‣ arithmetic

‣ conditionals

Optimization

‣ finite-precision

‣ elementary functions

real-valued specification
with transcendental functions

fixed-point/floating-point implementation
with polynomial approximations

Da

isy

Daisy

def sine(x: Double): Double = {
 require(-1.5 <= x && x <= 1.5)

 x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0

}

floating-point arithmetic

real-valued specification
def sine(x: Real): Real = {
 require(-1.5 <= x && x <= 1.5 && x +/- 1e-11)

 x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0

} ensuring(res => res +/- 1.001e-11)

fixed-point arithmetic

ap_fixed<64,3> sine(ap_fixed<64,2> x) {
 ap_fixed<64,4> _const0 = 6.0;
 ap_fixed<64,3> _tmp = (x * x);
 ap_fixed<64,3> _tmp1 = (_tmp * x);
 ap_fixed<64,1> _tmp2 = (_tmp1 / _const0);
 ap_fixed<64,3> _tmp3 = (x - _tmp2);
 ...

Da

isy

finite-precision implementation

Worst-case Accuracy
for arithmetic expressions

absolute errors [TOPLAS'17]
‣ static data-flow analysis with

interval & affine arithmetic
‣ interval subdivision

max
x2I

|f(x)� f̃(x̃)|

relative errors [FMCAD'17]
‣ global optimization
‣ for floating-points only

max
x2I

|f(x)� f̃(x̃)|
|f(x)|

def sine(x: Real): Real = {
 require(-1.5 <= x && x <= 1.5 && x +/- 1e-11)

 x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0

} ensuring(res => res +/- 1.001e-11)

Challenge: tight bounds for nonlinear arithmetic

Certificates [FMCAD'18, FM'19]

def sine(x: Double): Double = {
 require(-1.5 <= x && x <= 1.5)

 x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0

}

floating-point arithmetic

real-valued specification

Da

isy

def sine(x: Real): Real = {
 require(-1.5 <= x && x <= 1.5 && x +/- 1e-11)

 x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0

} ensuring(res => res +/- 1.001e-11)

fixed-point arithmetic

ap_fixed<64,3> sine(ap_fixed<64,2> x) {
 ap_fixed<64,4> _const0 = 6.0;
 ap_fixed<64,3> _tmp = (x * x);
 ap_fixed<64,3> _tmp1 = (_tmp * x);
 ap_fixed<64,1> _tmp2 = (_tmp1 / _const0);
 ap_fixed<64,3> _tmp3 = (x - _tmp2);
 ...

 formally verified finite-precision implementation

Overview

Accuracy verification

‣ arithmetic

‣ conditionals

Optimization

‣ finite-precision

‣ elementary functions

real-valued specification
with transcendental functions

fixed-point/floating-point implementation
with polynomial approximations

Da

isy

Conditionals: Continuous Case
def sine(x: Real): Real = {
 require(-2.0 < x && x < 2.0 && x +/- 1e-11)

 if (x < 1.0) {
 0.95493 * x - 0.12901*(x*x*x)
 } else {
 x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0
 }

} ensuring(res => res +/- 1.001e-11)

Challenge: complexity of constraint

Control-flow may diverge:
reals

finite-precision

max
x2I

|f(x)� f̃(x̃)|

10 Eva Darulova and Viktor Kuncak

always include the real ones ([a, b] ✓ [c, d]), and we use the actual ranges ([c, d])
for the computation of K and �. We believe that it is reasonable to assume that
a user writing these applications to have the domain knowledge to be able to
provide these specifications.

4 Errors due to Discontinuities

Recall the piece-wise jet engine approximation from Figure 3. Due to the initial
errors on x and y, the real-valued computation may take a different branch than
the finite-precision one, and thus produce a different result. We call this difference
the discontinuity error.

Previous approaches construct a constraint encoding the difference between
the real value computed by one branch and the finite-precision value computed by
the other. The other direction is handled symmetrically. They differ in how they
handle the constraints introduced by the branch condition. Fluctuat constrains
the affine forms of the real and floating- point computation in its abstract
domain based on a logical product with the interval domain [17]. Rosa essentially
constructs one constraint that encodes the computation along both paths and the
correlation between the variables of these two paths. The resulting difference is
refined with the Z3 SMT solver. Fluctuat’s approach becomes quickly imprecise
when the functions are not linear due to the underlying domain. Rosa’s approach
produces very precise but complex constraints which work nicely for simple
functions, but are hard to handle beyond these. In this section, we show how
to apply the separation of errors idea and overcome the limitations of these
techniques.

Individual branch conditions are of the form e1�e2, where � 2 {<,, >,�} and
e1, e2 are arithmetic expressions and more complex conditions can be obtained by
nesting. Further, we do not assume the function represented by the conditional
to be neither smooth nor continuous. We perform our analysis pairwise for each
pair of paths in the program. While this gives, in the worst-case, an exponential
number of cases to consider, we found that many of these cases are infeasible
due to inconsistent branch conditions and are eliminated early.

4.1 Applying Separation of Errors

Using our previous notation, let us consider a function with a single branch
statement like in the example above and let f1 and f2 be the real-valued functions
corresponding to the if and the else branch respectively. Then, the discontinuity
error is given by |f1(x)� f̃2(x̃)|, i.e. the real computation takes branch f1, and
the finite-precision one f2. The opposite case is analogous. We again apply the
idea of separation of errors:

|f1(x)� f̃2(x̃)|  |f1(x)� f1(x̃)|+ |f1(x̃)� f2(x̃)|+ |f2(x̃)� f̃2(x̃)| (6)

The individual components are

f1
f2

Conditionals: Continuous Case
def sine(x: Real): Real = {
 require(-2.0 < x && x < 2.0 && x +/- 1e-11)

 if (x < 1.0) {
 0.95493 * x - 0.12901*(x*x*x)
 } else {
 x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0
 }

} ensuring(res => res +/- 1.001e-11)

Challenge: complexity of constraint

‣ break up total error into different manageable pieces [TOPLAS'17]

max
x2I

|f(x)� f̃(x̃)|

10 Eva Darulova and Viktor Kuncak

always include the real ones ([a, b] ✓ [c, d]), and we use the actual ranges ([c, d])
for the computation of K and �. We believe that it is reasonable to assume that
a user writing these applications to have the domain knowledge to be able to
provide these specifications.

4 Errors due to Discontinuities

Recall the piece-wise jet engine approximation from Figure 3. Due to the initial
errors on x and y, the real-valued computation may take a different branch than
the finite-precision one, and thus produce a different result. We call this difference
the discontinuity error.

Previous approaches construct a constraint encoding the difference between
the real value computed by one branch and the finite-precision value computed by
the other. The other direction is handled symmetrically. They differ in how they
handle the constraints introduced by the branch condition. Fluctuat constrains
the affine forms of the real and floating- point computation in its abstract
domain based on a logical product with the interval domain [17]. Rosa essentially
constructs one constraint that encodes the computation along both paths and the
correlation between the variables of these two paths. The resulting difference is
refined with the Z3 SMT solver. Fluctuat’s approach becomes quickly imprecise
when the functions are not linear due to the underlying domain. Rosa’s approach
produces very precise but complex constraints which work nicely for simple
functions, but are hard to handle beyond these. In this section, we show how
to apply the separation of errors idea and overcome the limitations of these
techniques.

Individual branch conditions are of the form e1�e2, where � 2 {<,, >,�} and
e1, e2 are arithmetic expressions and more complex conditions can be obtained by
nesting. Further, we do not assume the function represented by the conditional
to be neither smooth nor continuous. We perform our analysis pairwise for each
pair of paths in the program. While this gives, in the worst-case, an exponential
number of cases to consider, we found that many of these cases are infeasible
due to inconsistent branch conditions and are eliminated early.

4.1 Applying Separation of Errors

Using our previous notation, let us consider a function with a single branch
statement like in the example above and let f1 and f2 be the real-valued functions
corresponding to the if and the else branch respectively. Then, the discontinuity
error is given by |f1(x)� f̃2(x̃)|, i.e. the real computation takes branch f1, and
the finite-precision one f2. The opposite case is analogous. We again apply the
idea of separation of errors:

|f1(x)� f̃2(x̃)|  |f1(x)� f1(x̃)|+ |f1(x̃)� f2(x̃)|+ |f2(x̃)� f̃2(x̃)| (6)

The individual components are roundoff errorLipschitz const. real difference

finite-precision

f1
f2

Control-flow may diverge:
reals

def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

 val res = -x1*x2 - 2*x2*x3 - x1 - x3

 if (res <= 0.0)
 raise_alarm()
 else
 continue()
}

Conditionals: Discrete Case

def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

 val res = -x1*x2 - 2*x2*x3 - x1 - x3

 if (res <= 0.0)
 raise_alarm()
 else
 continue()
}

reals

finite-precision

def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

 val res = -x1*x2 - 2*x2*x3 - x1 - x3

 if (res <= 0.0)
 return 0
 else
 return 1
}

Conditionals: Discrete Case

reals

finite-precision

worst-case analysis: maximum error = 1

def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

 val res = -x1*x2 - 2*x2*x3 - x1 - x3

 if (res <= 0.0)
 return 0
 else
 return 1
}

reals

finite-precision

Conditionals: Discrete Case

worst-case analysis: maximum error = 1

How often will the program return the wrong answer?

Probabilistic Analysis

def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

 val res = -x1*x2 - 2*x2*x3 - x1 - x3

 if (res <= 0.0)
 return 0
 else
 return 1

}

Goal: compute 'wrong path probability' (WPP)
‣ probability to compute the wrong answer

Exact Symbolic Inference

x1 := gauss(-15.0, 15.0);
x2 := gauss(-15.0, 15.0);
x3 := gauss(-15.0, 15.0);
res := -x1*x2 - 2*x2*x3 - x1 - x3;

 
error := 0.2042266; // worst-case error computed with Daisy

assert(0.0 - error <= res && res <= 0.0 + error);

encode WPP as probabilistic program:

[1] PSI: Exact Symbolic Inference for Probabilistic Programs, CAV, 2016

1. compute exact expression for WPP with PSI [1]

2. solve numerically with Mathematica

Exact Symbolic Inference

x1 := gauss(-15.0, 15.0);
x2 := gauss(-15.0, 15.0);
x3 := gauss(-15.0, 15.0);
res := -x1*x2 - 2*x2*x3 - x1 - x3;

 
error := 0.2042266; // worst-case error computed with Daisy

assert(0.0 - error <= res && res <= 0.0 + error);

encode WPP as probabilistic program:

[1] PSI: Exact Symbolic Inference for Probabilistic Programs, CAV, 2016

1. compute exact expression for WPP with PSI [1]

2. solve numerically with Mathematica

20min

Probabilistic Range Analysis 5

�1 �0.5 0.250.5 1 2

1

b) Arithmetic Operations: Arithmetic operations over
DSIs,
X � Y,� 2 {+,�,⇥,÷}, distinguish the cases where X and
Y are independent, or dependent with unknown dependency.

With dX = {hxi, wii | i 2 [1, n]} and dY = {hyj, vji | j 2
[1,m]}, obtaining the DSI structure for Z = X � Y for inde-
pendent X and Y is straightforward: dZ = {hzi,j, ri,ji | i 2
[1, n], j 2 [1,m]} with zi,j = xi � yj and ri,j = wi ⇥ vj .

The dependent case is more involved as we have to consider
any dependency between X and Y to compute a sound over-
and under- approximation of the probability. We use the method
of [21], which first computes the solution in an alternative
representation of DSI’s, so-called discrete p-boxes [20], and
then transforms the P-box back to a DSI. A discrete P-box
[P , P] is a pair of two non-decreasing step-functions functions
P and P such that P is left-continuous, P is right-continuous
and 8x. P (x)  P (x). A P-box encloses all probability
distributions whose cumulative distribution function (CDF)
P satisfy 8x.P (x)  P (x)  P (x).

To compute the solution Z = X � Y as a P-box [FZ , FZ],
we first compute the arithmetic operation on the intervals of all
pairs of focal elements (as in the independent case), obtaining
a matrix of intervals: xi � yj = [zi,j , zi,j]. However, it no
longer holds that ri,j = wi ⇥ vj . Rather, we only know the
following constraints, corresponding to the rows and columns
of this matrix:

8i 2 [1, n],
mX

j=1

ri,j = wi 8j 2 [1,m],
nX

i=1

ri,j = vj

Intuitively, we want to compute an upper and a lower bound
on the cumulative distribution function at every point in the
domain. Since the P-boxes are step functions, we effectively
only need to perform this computation at the end points of
the intervals in the interval matrix. The maximization, resp.
minimization, of the cumulative distribution function can be
phrased as a linear program:

FZ(z) = minimize
P

zi,jz ri,j

such that 8i 2 [1, n],
mP
j=1

ri,j = wi

8j 2 [1,m],
nP

i=1
ri,j = vj

This computes the lower P-box. The constraint
P

zi,jz ri,j
expresses that all ri,j’s have to be taken into account, whose
corresponding intervals are definitely below z. The formula
for FZ is analogous.

We can then convert the resulting discrete P-Box [FZ , FZ]
to the DSI dZ . The intervals xi are obtained by matching the
lower and upper P-Box and the weights wi from the height of
the steps.

Dependent arithmetic is clearly costly, and in addition may
lose some precision. It is thus important to keep track of
dependencies between variables in order to be able to apply
independent arithmetic operations as much as possible. We do
this by using affine arithmetic, which we describe next.

B. Probabilistic Affine Arithmetic

Affine arithmetic (AA) [22] is an extension of IA which
tracks linear correlations between variables. Each quantity
is represented as an affine combination of noise symbols "i:
x̂ := x0 +

Pn
i=1 xi"i, "i 2 [�1, 1]. The same noise symbol

can be shared by several affine forms, capturing correlations.
An affine form x̂ represents a set of values (an interval):

⇥
x0�Pn

i=1 |xi|, x0 +
Pn

i=1 |xi|
⇤
.

Linear arithmetic operations are computed term-wise:

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣) +
nX

i=1

(↵xi + �yi)"i

Nonlinear operations are approximated by linearization and a
fresh noise symbol for the remainder term, see e.g. [22] for
more details.

Bouissou et.al. [11] introduced probabilistic affine forms
which combine affine arithmetic with DSI structures: DSIs
compute probability distributions and affine arithmetic tracks
the (linear) dependency information between them. Concretely,
a probabilistic affine form for a variable x is given by
x̂ = x0 +

Pn
i=1 xi⌘i where each noise symbol ⌘i is equipped

with a DSI d⌘i with support [�1, 1]. Thus, noise symbols in
standard affine arithmetic track nondeterministic uncertainty,
while probabilistic affine forms can capture more detailed
probabilistic information.

The presentation in [11] explicitly distinguishes between
two kinds of noise terms, independent ones and those with an
undefined dependency. In our present implementation, we do
not make this distinction. Instead, each noise symbol keeps a
set of indices on which it has a potential dependency.

As a standard affine arithmetic form represents an interval,
a probabilistic affine form represents a probability distribution
which is computed by summing the weighted DSIs associated
with each noise symbol: x0 +

Pn
i=1 xid⌘i . Depending on

whether a d⌘i has a dependency on the current running sum,
the addition operation is dependent or independent.

Linear and unary arithmetic operations over probabilistic
affine forms work exactly the same as standard affine form
operations. For non-linear operations, like multiplication, we
compute the magnitude of the remainder term as in e.g. [11].

V. IMPLEMENTATION AND EXTENSION

While the previous section covers the high-level algorithm
of probabilistic affine forms, in practice the implementation
relies on several additional design decisions. Unfortunately, the
previous implementation [11] was not available, nor were many
of the details. In this section, we first provide the most important
design decisions we took before turning to our extension.

[2] A Generalization of P-boxes to Affine Arithmetic, Computing, vol. 94, no. 2-4, pp. 189–201, 2012.

• discretize input distribution
{<[a1, b1], w1>, <[a2, b2], w2>, ... ,<[an, bn], wn>}

‣ number of subdivisions determines accuracy

• propagation for independent variables: interval arithmetic

• propagation for dependent variables
‣ LP problem
‣ keep track of linear dependencies with affine arithmetic [2]

Computing WPP [EMSOFT'18]

input program

compute intersection (WPP)

roundoff analysis

error := 0.2042266

f(x̄)

probabilistic analysis
5

�1 �0.5 0.250.5 1 2

1

b) Arithmetic Operations: Arithmetic operations over
DSIs,
X � Y,� 2 {+,�,⇥,÷}, distinguish the cases where X and
Y are independent, or dependent with unknown dependency.

With dX = {hxi, wii | i 2 [1, n]} and dY = {hyj, vji | j 2
[1,m]}, obtaining the DSI structure for Z = X � Y for inde-
pendent X and Y is straightforward: dZ = {hzi,j, ri,ji | i 2
[1, n], j 2 [1,m]} with zi,j = xi � yj and ri,j = wi ⇥ vj .

The dependent case is more involved as we have to consider
any dependency between X and Y to compute a sound over-
and under- approximation of the probability. We use the method
of [21], which first computes the solution in an alternative
representation of DSI’s, so-called discrete p-boxes [20], and
then transforms the P-box back to a DSI. A discrete P-box
[P , P] is a pair of two non-decreasing step-functions functions
P and P such that P is left-continuous, P is right-continuous
and 8x. P (x)  P (x). A P-box encloses all probability
distributions whose cumulative distribution function (CDF)
P satisfy 8x.P (x)  P (x)  P (x).

To compute the solution Z = X � Y as a P-box [FZ , FZ],
we first compute the arithmetic operation on the intervals of all
pairs of focal elements (as in the independent case), obtaining
a matrix of intervals: xi � yj = [zi,j , zi,j]. However, it no
longer holds that ri,j = wi ⇥ vj . Rather, we only know the
following constraints, corresponding to the rows and columns
of this matrix:

8i 2 [1, n],
mX

j=1

ri,j = wi 8j 2 [1,m],
nX

i=1

ri,j = vj

Intuitively, we want to compute an upper and a lower bound
on the cumulative distribution function at every point in the
domain. Since the P-boxes are step functions, we effectively
only need to perform this computation at the end points of
the intervals in the interval matrix. The maximization, resp.
minimization, of the cumulative distribution function can be
phrased as a linear program:

FZ(z) = minimize
P

zi,jz ri,j

such that 8i 2 [1, n],
mP
j=1

ri,j = wi

8j 2 [1,m],
nP

i=1
ri,j = vj

This computes the lower P-box. The constraint
P

zi,jz ri,j
expresses that all ri,j’s have to be taken into account, whose
corresponding intervals are definitely below z. The formula
for FZ is analogous.

We can then convert the resulting discrete P-Box [FZ , FZ]
to the DSI dZ . The intervals xi are obtained by matching the
lower and upper P-Box and the weights wi from the height of
the steps.

Dependent arithmetic is clearly costly, and in addition may
lose some precision. It is thus important to keep track of
dependencies between variables in order to be able to apply
independent arithmetic operations as much as possible. We do
this by using affine arithmetic, which we describe next.

B. Probabilistic Affine Arithmetic

Affine arithmetic (AA) [22] is an extension of IA which
tracks linear correlations between variables. Each quantity
is represented as an affine combination of noise symbols "i:
x̂ := x0 +

Pn
i=1 xi"i, "i 2 [�1, 1]. The same noise symbol

can be shared by several affine forms, capturing correlations.
An affine form x̂ represents a set of values (an interval):

⇥
x0�Pn

i=1 |xi|, x0 +
Pn

i=1 |xi|
⇤
.

Linear arithmetic operations are computed term-wise:

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣) +
nX

i=1

(↵xi + �yi)"i

Nonlinear operations are approximated by linearization and a
fresh noise symbol for the remainder term, see e.g. [22] for
more details.

Bouissou et.al. [11] introduced probabilistic affine forms
which combine affine arithmetic with DSI structures: DSIs
compute probability distributions and affine arithmetic tracks
the (linear) dependency information between them. Concretely,
a probabilistic affine form for a variable x is given by
x̂ = x0 +

Pn
i=1 xi⌘i where each noise symbol ⌘i is equipped

with a DSI d⌘i with support [�1, 1]. Thus, noise symbols in
standard affine arithmetic track nondeterministic uncertainty,
while probabilistic affine forms can capture more detailed
probabilistic information.

The presentation in [11] explicitly distinguishes between
two kinds of noise terms, independent ones and those with an
undefined dependency. In our present implementation, we do
not make this distinction. Instead, each noise symbol keeps a
set of indices on which it has a potential dependency.

As a standard affine arithmetic form represents an interval,
a probabilistic affine form represents a probability distribution
which is computed by summing the weighted DSIs associated
with each noise symbol: x0 +

Pn
i=1 xid⌘i . Depending on

whether a d⌘i has a dependency on the current running sum,
the addition operation is dependent or independent.

Linear and unary arithmetic operations over probabilistic
affine forms work exactly the same as standard affine form
operations. For non-linear operations, like multiplication, we
compute the magnitude of the remainder term as in e.g. [11].

V. IMPLEMENTATION AND EXTENSION

While the previous section covers the high-level algorithm
of probabilistic affine forms, in practice the implementation
relies on several additional design decisions. Unfortunately, the
previous implementation [11] was not available, nor were many
of the details. In this section, we first provide the most important
design decisions we took before turning to our extension.

f(x̄)

Computing Intersection

�1 �0.5 0.250.5 1 2

1

w1
w2

w3
w4

w5

error := 0.2042266

T := 0.0

WPP = w1 + w2

def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

 val res = -x1*x2 - 2*x2*x3 - x1 - x3

 if (res <= 0.0)
 return 0
 else
 return 1

}

WPP = 1.0

Probabilistic Range Analysis

Computing WPP II
input program

compute intersection (WPP)

roundoff analysis

error := 0.2042266

probabilistic analysis
5

�1 �0.5 0.250.5 1 2

1

b) Arithmetic Operations: Arithmetic operations over
DSIs,
X � Y,� 2 {+,�,⇥,÷}, distinguish the cases where X and
Y are independent, or dependent with unknown dependency.

With dX = {hxi, wii | i 2 [1, n]} and dY = {hyj, vji | j 2
[1,m]}, obtaining the DSI structure for Z = X � Y for inde-
pendent X and Y is straightforward: dZ = {hzi,j, ri,ji | i 2
[1, n], j 2 [1,m]} with zi,j = xi � yj and ri,j = wi ⇥ vj .

The dependent case is more involved as we have to consider
any dependency between X and Y to compute a sound over-
and under- approximation of the probability. We use the method
of [21], which first computes the solution in an alternative
representation of DSI’s, so-called discrete p-boxes [20], and
then transforms the P-box back to a DSI. A discrete P-box
[P , P] is a pair of two non-decreasing step-functions functions
P and P such that P is left-continuous, P is right-continuous
and 8x. P (x)  P (x). A P-box encloses all probability
distributions whose cumulative distribution function (CDF)
P satisfy 8x.P (x)  P (x)  P (x).

To compute the solution Z = X � Y as a P-box [FZ , FZ],
we first compute the arithmetic operation on the intervals of all
pairs of focal elements (as in the independent case), obtaining
a matrix of intervals: xi � yj = [zi,j , zi,j]. However, it no
longer holds that ri,j = wi ⇥ vj . Rather, we only know the
following constraints, corresponding to the rows and columns
of this matrix:

8i 2 [1, n],
mX

j=1

ri,j = wi 8j 2 [1,m],
nX

i=1

ri,j = vj

Intuitively, we want to compute an upper and a lower bound
on the cumulative distribution function at every point in the
domain. Since the P-boxes are step functions, we effectively
only need to perform this computation at the end points of
the intervals in the interval matrix. The maximization, resp.
minimization, of the cumulative distribution function can be
phrased as a linear program:

FZ(z) = minimize
P

zi,jz ri,j

such that 8i 2 [1, n],
mP
j=1

ri,j = wi

8j 2 [1,m],
nP

i=1
ri,j = vj

This computes the lower P-box. The constraint
P

zi,jz ri,j
expresses that all ri,j’s have to be taken into account, whose
corresponding intervals are definitely below z. The formula
for FZ is analogous.

We can then convert the resulting discrete P-Box [FZ , FZ]
to the DSI dZ . The intervals xi are obtained by matching the
lower and upper P-Box and the weights wi from the height of
the steps.

Dependent arithmetic is clearly costly, and in addition may
lose some precision. It is thus important to keep track of
dependencies between variables in order to be able to apply
independent arithmetic operations as much as possible. We do
this by using affine arithmetic, which we describe next.

B. Probabilistic Affine Arithmetic

Affine arithmetic (AA) [22] is an extension of IA which
tracks linear correlations between variables. Each quantity
is represented as an affine combination of noise symbols "i:
x̂ := x0 +

Pn
i=1 xi"i, "i 2 [�1, 1]. The same noise symbol

can be shared by several affine forms, capturing correlations.
An affine form x̂ represents a set of values (an interval):

⇥
x0�Pn

i=1 |xi|, x0 +
Pn

i=1 |xi|
⇤
.

Linear arithmetic operations are computed term-wise:

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣) +
nX

i=1

(↵xi + �yi)"i

Nonlinear operations are approximated by linearization and a
fresh noise symbol for the remainder term, see e.g. [22] for
more details.

Bouissou et.al. [11] introduced probabilistic affine forms
which combine affine arithmetic with DSI structures: DSIs
compute probability distributions and affine arithmetic tracks
the (linear) dependency information between them. Concretely,
a probabilistic affine form for a variable x is given by
x̂ = x0 +

Pn
i=1 xi⌘i where each noise symbol ⌘i is equipped

with a DSI d⌘i with support [�1, 1]. Thus, noise symbols in
standard affine arithmetic track nondeterministic uncertainty,
while probabilistic affine forms can capture more detailed
probabilistic information.

The presentation in [11] explicitly distinguishes between
two kinds of noise terms, independent ones and those with an
undefined dependency. In our present implementation, we do
not make this distinction. Instead, each noise symbol keeps a
set of indices on which it has a potential dependency.

As a standard affine arithmetic form represents an interval,
a probabilistic affine form represents a probability distribution
which is computed by summing the weighted DSIs associated
with each noise symbol: x0 +

Pn
i=1 xid⌘i . Depending on

whether a d⌘i has a dependency on the current running sum,
the addition operation is dependent or independent.

Linear and unary arithmetic operations over probabilistic
affine forms work exactly the same as standard affine form
operations. For non-linear operations, like multiplication, we
compute the magnitude of the remainder term as in e.g. [11].

V. IMPLEMENTATION AND EXTENSION

While the previous section covers the high-level algorithm
of probabilistic affine forms, in practice the implementation
relies on several additional design decisions. Unfortunately, the
previous implementation [11] was not available, nor were many
of the details. In this section, we first provide the most important
design decisions we took before turning to our extension.

interval subdivision

Computing WPP III
input program

compute intersection (WPP)

roundoff analysis

error := 0.2042266

probabilistic analysis
5

�1 �0.5 0.250.5 1 2

1

b) Arithmetic Operations: Arithmetic operations over
DSIs,
X � Y,� 2 {+,�,⇥,÷}, distinguish the cases where X and
Y are independent, or dependent with unknown dependency.

With dX = {hxi, wii | i 2 [1, n]} and dY = {hyj, vji | j 2
[1,m]}, obtaining the DSI structure for Z = X � Y for inde-
pendent X and Y is straightforward: dZ = {hzi,j, ri,ji | i 2
[1, n], j 2 [1,m]} with zi,j = xi � yj and ri,j = wi ⇥ vj .

The dependent case is more involved as we have to consider
any dependency between X and Y to compute a sound over-
and under- approximation of the probability. We use the method
of [21], which first computes the solution in an alternative
representation of DSI’s, so-called discrete p-boxes [20], and
then transforms the P-box back to a DSI. A discrete P-box
[P , P] is a pair of two non-decreasing step-functions functions
P and P such that P is left-continuous, P is right-continuous
and 8x. P (x)  P (x). A P-box encloses all probability
distributions whose cumulative distribution function (CDF)
P satisfy 8x.P (x)  P (x)  P (x).

To compute the solution Z = X � Y as a P-box [FZ , FZ],
we first compute the arithmetic operation on the intervals of all
pairs of focal elements (as in the independent case), obtaining
a matrix of intervals: xi � yj = [zi,j , zi,j]. However, it no
longer holds that ri,j = wi ⇥ vj . Rather, we only know the
following constraints, corresponding to the rows and columns
of this matrix:

8i 2 [1, n],
mX

j=1

ri,j = wi 8j 2 [1,m],
nX

i=1

ri,j = vj

Intuitively, we want to compute an upper and a lower bound
on the cumulative distribution function at every point in the
domain. Since the P-boxes are step functions, we effectively
only need to perform this computation at the end points of
the intervals in the interval matrix. The maximization, resp.
minimization, of the cumulative distribution function can be
phrased as a linear program:

FZ(z) = minimize
P

zi,jz ri,j

such that 8i 2 [1, n],
mP
j=1

ri,j = wi

8j 2 [1,m],
nP

i=1
ri,j = vj

This computes the lower P-box. The constraint
P

zi,jz ri,j
expresses that all ri,j’s have to be taken into account, whose
corresponding intervals are definitely below z. The formula
for FZ is analogous.

We can then convert the resulting discrete P-Box [FZ , FZ]
to the DSI dZ . The intervals xi are obtained by matching the
lower and upper P-Box and the weights wi from the height of
the steps.

Dependent arithmetic is clearly costly, and in addition may
lose some precision. It is thus important to keep track of
dependencies between variables in order to be able to apply
independent arithmetic operations as much as possible. We do
this by using affine arithmetic, which we describe next.

B. Probabilistic Affine Arithmetic

Affine arithmetic (AA) [22] is an extension of IA which
tracks linear correlations between variables. Each quantity
is represented as an affine combination of noise symbols "i:
x̂ := x0 +

Pn
i=1 xi"i, "i 2 [�1, 1]. The same noise symbol

can be shared by several affine forms, capturing correlations.
An affine form x̂ represents a set of values (an interval):

⇥
x0�Pn

i=1 |xi|, x0 +
Pn

i=1 |xi|
⇤
.

Linear arithmetic operations are computed term-wise:

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣) +
nX

i=1

(↵xi + �yi)"i

Nonlinear operations are approximated by linearization and a
fresh noise symbol for the remainder term, see e.g. [22] for
more details.

Bouissou et.al. [11] introduced probabilistic affine forms
which combine affine arithmetic with DSI structures: DSIs
compute probability distributions and affine arithmetic tracks
the (linear) dependency information between them. Concretely,
a probabilistic affine form for a variable x is given by
x̂ = x0 +

Pn
i=1 xi⌘i where each noise symbol ⌘i is equipped

with a DSI d⌘i with support [�1, 1]. Thus, noise symbols in
standard affine arithmetic track nondeterministic uncertainty,
while probabilistic affine forms can capture more detailed
probabilistic information.

The presentation in [11] explicitly distinguishes between
two kinds of noise terms, independent ones and those with an
undefined dependency. In our present implementation, we do
not make this distinction. Instead, each noise symbol keeps a
set of indices on which it has a potential dependency.

As a standard affine arithmetic form represents an interval,
a probabilistic affine form represents a probability distribution
which is computed by summing the weighted DSIs associated
with each noise symbol: x0 +

Pn
i=1 xid⌘i . Depending on

whether a d⌘i has a dependency on the current running sum,
the addition operation is dependent or independent.

Linear and unary arithmetic operations over probabilistic
affine forms work exactly the same as standard affine form
operations. For non-linear operations, like multiplication, we
compute the magnitude of the remainder term as in e.g. [11].

V. IMPLEMENTATION AND EXTENSION

While the previous section covers the high-level algorithm
of probabilistic affine forms, in practice the implementation
relies on several additional design decisions. Unfortunately, the
previous implementation [11] was not available, nor were many
of the details. In this section, we first provide the most important
design decisions we took before turning to our extension.

interval subdivision
with reachability check

def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

 val res = -x1*x2 - 2*x2*x3 - x1 - x3

 if (res <= 0.0)
 return 0
 else
 return 1

}

WPP = 0.07060

Probabilistic Range Analysis
with subdivision

Experimental Results
‣ analysis runs on the order of minutes
‣ computes different WPP for gaussian and uniform inputs (as expected)
‣ over-approximation modest (about one order of magnitude):

4.50E-05

9.00E-05

1.35E-04

1.80E-04

sine sineOrder3 sqroot bspline0 bspline1 bspline2 bspline3

PSI prob. + subdiv

Overview

Accuracy verification

‣ arithmetic

‣ conditionals

Optimization

‣ finite-precision

‣ elementary functions

real-valued specification
with transcendental functions

fixed-point/floating-point implementation
with polynomial approximations

Da

isy

Assigning Precision

Double precision is just not enough: 3.5e-13

Quad satisfies absolute error bound: 1.5e-28
but is significantly slower than double precision

def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

-Dx1 *D x2 -Q (2*D x2) *Q x3 -Q x1 -Q x3

} ensuring(res => res +/- 1.75e-13)

Assigning Precision
def rigidBody(x1: Real, x2: Real, x3: Real): Real = {
 require(-15.0 ≤ x1 ≤ 15 && -15.0 ≤ x2 ≤ 15.0 && -15.0 ≤ x3 ≤ 15)

-Dx1 *D x2 -Q (2*D x2) *Q x3 -Q x1 -Q x3

} ensuring(res => res +/- 1.75e-13)

Quad satisfies absolute error bound: 1.5e-28
but is significantly slower than double precision

 Mixed-precision satisfies absolute error bound
28% faster than uniform quad precision

Challenge: large, complex search space

Double precision is just not enough: 3.5e-13

Mixed-Precision Tuning
Our solution:
‣ incomplete search with static error analysis

‣ static cost function

Mixed-Precision Tuning
Our solution:
‣ incomplete search (delta debugging [3]) with static error analysis

‣ static cost function

128

64

12864128 64

12812864 64 128128

...

cost
function

[3] Precimonious: Tuning assistant for floating-point precision, SC, 2013

Mixed-Precision Tuning
Our solution:
‣ incomplete search with static error analysis

‣ static cost function

for floating-point arithmetic:
• benchmarked (best for Float, Double)
• simple (best for Float, Double, Quad)

for fixed-point arithmetic:
• area-based
• machine-learning based (for performance)

Goal: find computation order which
‣ incurs smallest roundoff error (over input range)
‣ is equivalent under real-valued semantics

a + (b + c) ≠ (a + b) + c

Challenge: large, complex search space

Our solution: genetic (heuristic) algorithm:
Iteratively evolve a population of expressions:

‣ mutate expression (associativity, distributivity etc. rules)
‣ evaluate fitness (static roundoff error)
‣ pick expr. from population (smaller roundoffs more likely)

significant (up to 70%) improvements in errors possible

Rewriting

rewriting (improves error)

mixed-precision (improves performance)

improves performance even more

+

=

def rigidBody(x1: Quad, x2: Quad, x3: Double): Double = {
 (-D(x1 *Q x2) -D (x1 +Q x3)) -D ((x2 *Q 2.0f) *D x3)
 }

satisfies absolute error bound
43% faster than uniform quad precision

Rewriting & Precision Tuning
[ICCPS’18]

Experimental Results
Re

la
tiv

e
Ru

nn
in

g
Ti

m
e

0.00

0.33

0.67

1.00

1.33

1.67

2.00

F F_0.5 F_0.1 F_0.01 D D_0.5 D_0.1 D_0.01

1.00

Daisy - mixed-only Daisy - rewriting only Daisy - full FPTuner FPTuner - rewritten

FPTuner Daisy
doppler 12m 48s 5min 4s
kepler 1h 26m 3s 2m 9s

rigidBody 4m 45s 36s
traincar 17m 17s 2m 11s

single precision just not enough
average runtime saving: 20%

‣ rewriting generally helpful

double precision just not enough
average runtime saving: 60%

Average Relative Running Time

Overview

Accuracy verification

‣ arithmetic

‣ conditionals

Optimization

‣ finite-precision

‣ elementary functions

real-valued specification
with transcendental functions

fixed-point/floating-point implementation
with polynomial approximations

Da

isy

Elementary Functions
def axisRotationX(x: Real, y: Real, theta: Real): Real = {
require(-2 ≤ x ≤ 2 && -2 ≤ y ≤ 2 && 0.01 ≤ theta ≤ 1.5)

x * cos(theta) + y * sin(theta)

} ensuring (res => res +/- 1.49e-6)

‣ library functions provide limited choice of precisions

‣ fixed-point implementations (for FPGAs) are inefficient

Goal: synthesize polynomial approximations
‣ efficient specialized implementation
‣ guaranteed end-to-end error bound
‣ fixed-point arithmetic implementation

Challenge: distribution of error budget

Elementary Function Synthesis [ATVA’19]
High-level Algorithm:

1. distribute global error budget

2. for each elementary function, distribute local error budget between:
‣ polynomial approximation
‣ fixed-point arithmetic of approximation

Global Error Distribution

Use mixed-precision tuning to assign precision to each
• arithmetic operation
• elementary function call

‣ transform precision assigned to functions into local error
‣ key idea: treat approximation errors as roundoff

‣ abstract cost function assigns 2x cost to elementary functions

High-level Algorithm:

1. distribute global error budget

2. for each elementary function, distribute local error budget between:
‣ polynomial approximation
‣ fixed-point arithmetic of approximation

Local Error Distribution

Feedback loop between
‣ start with equal split, estimate cost via cost function
‣ try increasing/decreasing approximation budget

High-level Algorithm:

1. distribute global error budget

2. for each elementary function, distribute local error budget between:
‣ polynomial approximation
‣ fixed-point arithmetic of approximation

Polynomial Approximation

Metalibm [4]: generator for piece-wise polynomial approximations
‣ Remez' algorithm for best polynomial approximation
‣ equal domain-splitting for piece-wise best approximation
‣ efficient double-precision floating-point implementation

[4] Metalibm: A Mathematical Functions Code Generator, ICMS 2014

High-level Algorithm:

1. distribute global error budget

2. for each elementary function, distribute local error budget between:
‣ polynomial approximation
‣ fixed-point arithmetic of approximation

Fixed-point Precision Assignment
[ATVA’19]

‣ assign mixed or uniform precision to each polynomial approximation

def sin_0_01to1_5(x: Real): Real = {

 if (x < 1.3021) {

 c0 +(c1 +((c3 +((c4 +((c5 +((c7 +(c8 * x)) * (x*x)))* x))* x)) * (x*x))) * x;

 } else { 
 xh = x - s1

 b0 + b1 * (b2 + (b4 + (b6 + b7 * xh) * xh) * xh)

}

High-level Algorithm:

1. distribute global error budget

2. for each elementary function, distribute local error budget between:
‣ polynomial approximation
‣ fixed-point arithmetic of approximation

Experimental Results
% cycles of original

0.0

0.3

0.6

1.0

1.3

1.6

ax
isR

ot
at

io
nX

ax

isR
ot

at
io

nY

fo
rw

ar
dk

2j
X

fo
rw

ar
dk

2j
Y

xu
1

xu
2

ro
dr

ig
ue

zR
ot

.
sin

xx
10

pe
nd

ul
um

1
pe

nd
ul

um
2

Ga
us

sia
nN

B
SV

C

small errors large errors

average:
45%

Daisy [TACAS’18]

real-valued specification
with transcendental functions

fixed-point/floating-point implementation
with polynomial approximations

Da
isy

Accuracy verification

‣ arithmetic

‣ conditionals

Optimization

‣ finite-precision

‣ elementary functions

Next Big Challenge: Scalability

Experimental Results WPP

WPP

0

0.25

0.5

0.75

1

dop
pler sin

e

sin
eO

rder3
sq

roo
t

bsp
line

0

bsp
line

1

bsp
line

2

bsp
line

3

rig
idBod

y1

rig
idBod

y2

tur
bine

1

tur
bine

2

tur
bine

3

tra
inc

ar1

tra
inc

ar2

tra
inc

ar3

tra
inc

ar4

PSI probabilistic only prob. + subdiv

Worst-case is Pessimistic

def sine(x: Real): Real = {
 require(-2.0 < x && x < 2.0)

 0.95493 * x - 0.12901*(x*x*x)
}

Not all inputs are equally likely!

Worst-case error bounds can be too pessimistic:
‣ not all errors are equally likely
‣ applications may tolerate an occasional large error

Probabilistic Analysis

def sine(x: Real): Real = {
 require(-2.0 < x && x < 2.0)

 0.95493 * x - 0.12901*(x*x*x)
}

Not all inputs are equally likely!

Alternative error specification: error bound with a probability

‣ probabilistic range analysis

‣ probabilistic interval subdivision 2.67e-7 with probability 0.85

2.97e-7 with probability 0.85

