
Formalizing the Solution to the Cap Set Problem1

Sander R. Dahmen2

Department of Mathematics, Vrije Universiteit Amsterdam, The Netherlands3

s.r.dahmen@vu.nl4

Johannes Hölzl5

Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands6

johannes.hoelzl@posteo.de7

Robert Y. Lewis8

Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands9

r.y.lewis@vu.nl10

Abstract11

In 2016, Ellenberg and Gijswijt established a new upper bound on the size of subsets of Fn
q with12

no three-term arithmetic progression. This problem has received much mathematical attention,13

particularly in the case q = 3, where it is commonly known as the cap set problem. Ellenberg14

and Gijswijt’s proof was published in the Annals of Mathematics and is noteworthy for its clever15

use of elementary methods. This paper describes a formalization of this proof in the Lean proof16

assistant, including both the general result in Fn
q and concrete values for the case q = 3. We faithfully17

follow the pen and paper argument to construct the bound. Our work shows that (some) modern18

mathematics is within the range of proof assistants.19

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of com-20

putation→ Type theory; Mathematics of computing→ Number-theoretic computations; Computing21

methodologies → Combinatorial algorithms; Software and its engineering → Formal methods22

Keywords and phrases formal proof, combinatorics, cap set problem, Lean23

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2324

Funding Sander R. Dahmen: NWO Vidi grant No. 639.032.613, New Diophantine Directions.25

Johannes Hölzl: ERC grant agreement No. 713999, Matryoshka.26

Robert Y. Lewis: ERC grant agreement No. 713999, Matryoshka.27

Acknowledgements We are grateful to the Lean mathlib maintainers and contributors on whose28

work this project is based. We thank Jeremy Avigad for helpful comments on this paper, and Manuel29

Eberl for pointing us to related work.30

1 Introduction31

As proof assistant technologies improve and their libraries grow, these tools are used with32

increasing frequency to formalize results at the cutting edge of computer science. At some33

prestigious conferences such as Principles of Programming Languages, it is common for papers34

establishing new metatheoretical results about programming languages to be accompanied35

by formal proofs. In the field of mathematics, though, the picture looks very different. Even36

though early proof assistants were developed by and for mathematicians [10, 27], there37

are still very few who use these tools in their work. With a small number of noteworthy38

exceptions [21, 23], no current work in pure mathematics work gets formalized; most of the39

results formalized in papers at Interactive Theorem Proving or Certified Programs and Proofs40

have already made it into undergraduate or introductory graduate textbooks.41

Researchers often point to the depth of mathematical theory to explain this difference.42

While programming language formalizations can be sprawling and difficult, they rarely depend43

on large background libraries, and often involve repetitive arguments that are amenable to44

© Sander R. Dahmen, Johannes Hölzl, and Robert Y. Lewis;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0014-0789
mailto:s.r.dahmen@vu.nl
https://orcid.org/0000-0003-0869-9250
mailto:johannes.hoelzl@posteo.de
https://orcid.org/0000-0002-5266-1121
mailto:r.y.lewis@vu.nl
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Formalizing the Solution to the Cap Set Problem

(a) A well-formed triple. Each card has the same
shape and the same number of shapes. Each card
has a different color and a different fill.

(b) A collection of twelve cards with no well-
formed triple.

Figure 1 The cap set problem can be interpreted in the game Set, where it asks about an upper
bound on the size of a collection of cards that contains no well-formed triple.

automation. In comparison, mathematics builds upwards on centuries of earlier work, and45

one cannot formalize modern results without first formalizing the necessary foundation. The46

few existing formal developments of cutting-edge mathematics tend to focus on results that47

are difficult to verify by hand—justifying the effort needed to develop libraries—or fall in48

subfields of mathematics where the background theory is less intimidating. The combinatorial49

proof described in this paper belongs in the latter category.50

Let G be an abelian group. A three-term arithmetic progression of elements of G is a51

sequence a, a+ g, a+ g+ g where a, g ∈ G and g is nonzero. Let r3(G) denote the cardinality52

of a largest subset of G containing no three-term arithmetic progression. We will focus on53

the group (Z/3Z)n = {(a1, . . . , an) | ai ∈ {0, 1, 2}}, where vector addition is pointwise and54

modulo 3; a subset of this group with no three-term arithmetic progression is known as a55

cap set. The cap set problem asks whether there is a constant c < 3 such that r3((Z/3Z)n)56

grows in n no faster than cn.57

Readers familiar with the card game Set (Figure 1) may recognize the cap set problem58

in different terms. A card in Set has four features, where each feature has three possible59

values. (A card has one, two, or three copies of a shape; the shape is an oval, a diamond, or60

a squiggle; the shape is solid, striped, or empty; the shape is purple, red, or green.) A triple61

of cards is said to be well-formed if, for each feature, either all three cards have the same62

value or all three cards have different values. During game play, players search a collection of63

cards for well-formed triples. The number r3((Z/3Z)4) is the maximum size of a collection64

of distinct cards in which no well-formed triples can be found, and the cap set problem asks65

about the growth rate of this value as the number of features is increased.66

The cap set problem is surprisingly difficult to analyze, and has attracted attention over67

the past decades from leading combinatorialists. Croot, Lev, and Pach [9] solved a closely68

related problem in 2016. Building on their work, Ellenberg and Gijswijt soon showed that69

r3((Z/3Z)n) is o(2.756n), a major and astonishing breakthrough. (In fact, they proved a70

more general result about finite fields, including Z/pZ for arbitrary prime p.) Their 201771

paper in the Annals of Mathematics [18] is noteworthy in that the core of the proof does72

not use any complicated theoretical machinery. Rather, it relies on a clever shift of context,73

casting the problem in terms of polynomials of bounded degree. While their final proof of74

the asymptotics does make use of relatively high-powered methods, Tao and Sawin [30] and75

Zeilberger [33] indicate how these calculations can be made elementary.76

This paper describes a formalization of Ellenberg and Gijswijt’s argument, carried out in77

the Lean proof assistant. While unavoidably more verbose, our computation of an upper78

bound for r3((Z/pZ)n) is faithful to Ellenberg and Gijswijt’s proof. To verify the asymptotics,79

S. R.Dahmen, J. Hölzl, and R. Y. Lewis 23:3

we work out a variation of Zeilberger’s simplifications of the original argument. Ellenberg80

and Gijswijt use a technique known as the polynomial method to translate the problem to81

one about vector spaces of polynomials; our library contributions will be useful for proving82

other results that follow this approach.83

A recent project begun at the Vrije Universiteit Amsterdam aims to bring together84

traditional mathematicians, formalizers, and tool developers to incorporate modern number85

theory into proof assistants.1 The current paper shows that the goals of this project are86

within reach: we have successfully formalized a paper published in the Annals less than two87

years ago.88

The more general components of our formalization have been incorporated into the Lean89

mathematics library mathlib, which is available on GitHub,2 and the remainder of the90

formalization is available in a separate repository.3 The code blocks presented in this paper91

should be read as schematic, not literal. We sometimes change names, remove namespaces,92

omit universe levels, and swap implicit and explicit arguments for the sake of formatting and93

presentation.94

In Section 2, we motivate and sketch the proof given by Ellenberg and Gijswijt. Section 395

provides some background about mathlib. Sections 4 and 5 present the formal proof,96

focusing respectively on the construction of an upper bound for a cap set and the asymptotic97

behavior of this bound. We conclude by discussing related work and reflecting on our findings.98

2 Mathematical Background99

Ellenberg and Gijswijt study a generalization of the cap set problem stated over an arbitrary100

finite field Fq with cardinality q. For any prime p, the abelian group Z/pZ has such structure101

by also considering multiplication modulo p, so this subsumes the original statement. While102

there are other examples of finite fields, we will not use any structural properties of Fq103

beyond some very basic facts, e.g. that q ≥ 2.104

For the rest of this discussion we fix positive integers q and n. For d ∈ R with 0 ≤ d ≤105

(q − 1)n, consider all n-variable monomials whose degree in each variable is at most q − 1106

and whose total degree is at most d, i.e.107

Md
n :=

{
n∏

i=1
xai

i ∈ Fq[x1, . . . , xn] | 0 ≤ ai ≤ q − 1 and
n∑

i=1
ai ≤ d

}
.108

Let md := |Md
n|. Ellenberg and Gijswijt [18, Theorem 4] establish an upper bound for the109

size of generalized cap sets in terms of m(q−1)n/3.110

I Theorem 1 (Ellenberg–Gijswijt). Let α, β, γ ∈ Fq such that α + β + γ = 0 and γ 6= 0.111

Let A be a subset of Fn
q such that the equation αa1 + βa2 + γa3 = 0 has no solutions with112

a1, a2, a3 ∈ A apart from those with a1 = a2 = a3. Then |A| ≤ 3m(q−1)n/3.113

If (α, β, γ) = (1,−2, 1), then the equation αa1 + βa2 + γa3 = 0 is equivalent to a2 − a1 =114

a3−a2; any solution to this, other than a1 = a2 = a3, corresponds to a three term arithmetic115

progression.116

To answer the cap set problem, it remains to determine good asymptotics for m(q−1)n/3117

as n→∞.118

1 https://lean-forward.github.io/
2 https://github.com/leanprover-community/mathlib/
3 add link

CVIT 2016

https://lean-forward.github.io/
https://github.com/leanprover-community/mathlib/

23:4 Formalizing the Solution to the Cap Set Problem

I Theorem 2. For every q there exists c ∈ R with 0 < c < q such that 3m(q−1)n/3 = O(cn)119

as n→∞.120

Thus, with notation from Theorem 1, |A| = O(cn) for some 0 < c < q. For particular values121

of q we can write down explicit values of c. In the case of the original cap set problem, where122

q = 3 (and α = β = γ = 1, also noting that −2 = 1 in Z/3Z), the proof method yields the123

following; the exact value c already appears in Zeilberger [33].124

I Theorem 3. Let c := 3
8

3
√

207 + 33
√

33 < 2.755105. Then r3 ((Z/3Z)n) = O(cn), and thus125

r3 ((Z/3Z)n) = o(2.755105n) (both as n→∞).126

The proof of Theorem 1 follows the polynomial method. (For a general introduction to127

the polynomial method, see e.g. Guth [22] and Tao [29].) Broadly speaking, this approach128

aims to study finite combinatorial objects by describing them through a system or space of129

polynomials. Techniques from algebraic geometry, or sometimes algebraic topology or simply130

linear algebra, can then be employed to study these polynomials; the results should translate131

back to properties of the original combinatorial objects of interest.132

In the last decade the polynomial method has been successfully employed to solve a large133

variety of open problems in arithmetic combinatorics and number theory. However, the134

scope and limitations of the method are still not well understood. In particular, it came135

as a complete surprise that it was applicable to the cap set problem, at least before the136

breakthrough of Croot, Lev, and Pach [9]. The main line of attack for the previous half137

century was through Fourier theory methods.138

We sketch here an overview of the proof of Theorem 1; more details can be found in139

Section 4. Let α, β, γ, and A be as stated in the theorem. We introduce the Fq-vector space140

spanned by Md
n, i.e.141

Sd
n :=

 ∑
m∈Md

n

cmm | cm ∈ Fq

 .142

Consider the Fq-vector subspace V of Sd
n consisting of all polynomials p ∈ Sd

n that vanish on143

the complement of −γA = {−γa | a ∈ A} inside Fn
q , i.e.144

V := {p ∈ Sd
n | ∀a ∈ Fn

q \ (−γA), p(a) = 0}.145

This is the setup of the polynomial method, the idea being that this space of polynomials146

V contains valuable information on | − γA| = |A| via dim(V). The strategy is to get good147

lower and upper bounds on dim(V). Namely, it holds that148

dim(V) ≥ md − qn + |A| and dim(V) ≤ 2md/2. (1)149

The lower bound is reasonably straightforward: it follows from rank-nullity and the remark150

that |Fn
q \ (−γA)| = qn − |A|. The upper bound is more involved and the key to it is the151

following.152

I Proposition 4 (Proposition 2 from [18]). Let A ⊆ Fn
q and α, β, γ ∈ Fq with α+ β + γ = 0.153

Let P ∈ Sd
n such that for all a, b ∈ A with a 6= b we have P (αa+ βb) = 0. Then154

|{a ∈ A | P (−γa) 6= 0}| ≤ 2md/2.155

In addition, an elementary combinatorial argument gives us156

qn −md ≤ m(q−1)n−d. (2)157

S. R.Dahmen, J. Hölzl, and R. Y. Lewis 23:5

Combining (1) and (2) and specializing at d = 2(q − 1)n/3 gives us Theorem 1, i.e.158

|A| ≤ 3m(q−1)n/3.159

It remains to establish the asymptotic behavior of this bound. Ellenberg and Gijswijt160

apply Cramér’s theorem on large deviations. Tao and Sawin [30] describe a more elementary161

approach, using amongst other things Stirling’s approximation for the factorial function.162

Zeilberger [33] gives another even more elementary approach using recurrence sequences.163

Inspired by Zeilberger’s technique, we work out yet another natural approach, which lends164

itself very well to formalization in Lean. At the same time, it feels quite natural, with the165

underlying (mostly straightforward) concepts of possible interest themselves.166

Starting with the combinatorial identity167

md =
bdc∑
i=0

(
coefficient of xi in the polynomial

(
1 + x+ . . . xq−1)n

)
(3)168

we will bound the coefficients of these polynomials. This is possible via Cauchy’s residue169

theorem from complex analysis, but setting this up in Lean would take us too far afield.170

However, we can work in a purely algebraic manner as follows. Let k be any field, f ∈ k[x],171

i ∈ N, ζ ∈ k∗ of finite order l, and r ∈ k∗. If l > max(deg(f), i), then172

l ·
(
coefficient of xi in the polynomial f

)
=

l−1∑
j=0

f(rζj)
riζij

. (4)173

The key ingredient for proving this statement is the following special case of the geometric174

sum, where ζ and l are as above and h ∈ Z.175

l−1∑
j=0

ζhj =
{

0 if l - h
l if l | h

176

Repeatedly applying (4) to (3) with k = C, ζ = exp(2π
√
−1/l) for any l > n(q − 1), and177

r ∈ R satisfying 0 < r < 1, as well as calculating and estimating quite a bit, we obtain that178

m(q−1)n/3 ≤ Br,qC
n
r,q179

for some constants Br,q, Cr,q ∈ R>0 depending only on r and q. Specifically, we can take180

Cr,q = 1− rq

(1− r)r(q−1)/3 .181

Elementary analysis gives us that for every q > 1 there is some 0 < r < 1 such that Cr,q < q,182

yielding Theorem 2. Specialising at q = 3 and r = (
√

33 − 1)/8 gives the precise version183

of the cap set problem in Theorem 3. Similarly, minimalizing Cr,q for other values of q184

immediately leads to the growth rates given by Zeilberger [33] and beyond.185

3 Lean and its Mathematics Library186

The Lean proof assistant, developed principally by Leonardo de Moura, was first released in187

2014 [11]. Lean implements a version of the calculus of inductive constructions (CIC) [8]188

with support for quotient types and classical reasoning. Since the release of the most recent189

version in 2017 [17], there has been a concerted effort to develop mathlib, a comprehensive190

CVIT 2016

23:6 Formalizing the Solution to the Cap Set Problem

class semigroup (α : Type) extends has_mul α :=
(mul_assoc : ∀ a b c : α, a * b * c = a * (b * c))

class monoid (α : Type) extends semigroup α, has_one α :=
(one_mul : ∀ a : α, 1 * a = a) (mul_one : ∀ a : α, a * 1 = a)

class group (α : Type) extends monoid α, has_inv α :=
(mul_left_inv : ∀ a : α, a−1

* a = 1)

lemma one_inv (α : Type) [group α] : 1−1 = (1 : α) :=
inv_eq_of_mul_eq_one (one_mul 1)

Figure 2 A sample of the bottom of the algebraic hierarchy. The lemma one_inv can be applied
to any α for which Lean can infer an instance of group α.

library for use in mathematics and computer science [4]. Some of the text in this section is191

taken verbatim from a paper by the third author [26], which describes another formalization192

based on mathlib.193

The datatypes available in mathlib include the concrete types commonly found in194

mathematics, among them N, Z, Q, R, and C; finite sets and multisets over a base type;195

univariate and multivariate polynomials; and embeddings and isomorphisms between types.196

The algebraic hierarchy of mathlib is designed using type classes, which endow a base type197

with extra structure in the forms of operations, properties, and notation [28, 32]. Lean’s198

type class resolution mechanism automatically manages inheritance between type classes199

(Figure 2). If a type class T’ extends (directly or by transitivity) a type class T, any theorem200

proved over T will apply to any type that instantiates T’. The algebraic hierarchy begins201

with semigroups and monoids and extends to rich structures including fields, Noetherian202

rings, and principal ideal domains. Van Doorn, von Raumer, and Buchholz [31] give a more203

detailed explanation of how type classes are used to define an algebraic hierarchy in Lean.204

The formalization described in this paper makes heavy use of the linear algebra and205

multivariate polynomial developments in mathlib. As with the algebraic hierarchy, these206

developments are built around type classes. The linear algebra theory in particular is modeled207

after Isabelle’s, reworked to use bundled submodules and linear functions.208

The fundamental type class in linear algebra is module α β, which assumes a ring209

structure on α and an abelian group structure on β, and endows β with a well-behaved210

scalar multiplication operation from α. When α is a field, this extends to the type class211

vector_space α β. Many of the typical theorems and constructions from linear algebra212

are defined over this type class, including the existence of bases, the rank-nullity theorem213

for linear maps, and the matrix representation of maps between finite-dimensional spaces.214

In addition, general instances show that a family of vector spaces over an index type forms215

a vector space itself, and that a field α instantiates vector_space α α; combined, these216

allow us to consider the type of n-tuples of field elements, fin n → α, as a vector space217

over α with no extra work.218

Polynomials are another important instance of a vector space. Given a type σ used to219

index variables, we identify a monomial with a finitely supported function from σ to N; a220

multivariate polynomial is a finitely supported function mapping monomials into a coefficient221

ring α.222

223
def mv_polynomial (σ α : Type) [comm_semiring α] := (σ →0 N) →0 α224225

S. R.Dahmen, J. Hölzl, and R. Y. Lewis 23:7

class fintype (α : Type) :=
(elems : finset α) (complete : ∀ x : α, x ∈ elems)

def fintype.univ (α : Type) [fintype α] : finset α :=
fintype.elems α

def fintype.card (α : Type) [fintype α] : N := finset.card (univ α)

class inductive decidable (p : Prop) : Type
| is_false (h : ¬p) : decidable
| is_true (h : p) : decidable

@[reducible] def decidable_eq (α : Type) :=
Π (a b : α), decidable (a = b)

Figure 3 The fintype and decidable type classes.

When α is a field, this type forms a vector space over α. Important operations on polynomials226

include eval, which evaluates the polynomial in α given an assignment σ → α, and227

total_degree, which computes the maximum degree over all monomials in a polynomial.228

Many contributions were made to mathlib in the course of this project. In addition229

to improving the linear algebra, polynomial, and finitely supported function theories, we230

added various results about big operators and series, finite sets and multisets, and orders of231

elements in finite groups (to show, for example, that aq = a for a ∈ Fq).232

Other type classes that play important roles in our formalization are fintype α and233

decidable p (Figure 3). The former provides functions for listing and counting the elements234

of a type. The latter provides an algorithm for determining whether a proposition is true235

or false. We rely on the latter particularly in the decidable_eq α class, which endows α236

with an algorithm to determine whether two terms are equal or disequal.237

Assuming the axiom of choice, all propositions are decidable. The mathlib library238

attempts to define type-valued declarations computably when possible, but uses classical239

logic freely in propositions. Our formalization is similarly classical.240

Readers unused to Lean syntax should note that explicit arguments to declarations are241

enclosed in parentheses (), implicit arguments are enclosed in curly brackets {}, and type242

class arguments are enclosed in square brackets []. Only explicit arguments are given243

by the user when applying a declaration. Implicit arguments are inferred from following244

dependent arguments and the expected type, and type class arguments are inferred by type245

class resolution.246

Another important feature of Lean syntax is its projection notation. As an example, let247

terms F : polynomial α and a : α be given. The operator248

249
polynomial.eval : α → polynomial α → α250251

evaluates a polynomial at an argument. Because F has type polynomial, matching the252

namespace of eval, Lean allows us to abbreviate polynomial.eval a F with the more253

concise F.eval a. This notation can be nested:254

255
polynomial.eval a (polynomial.derivative F)256257

shortens to F.derivative.eval a.258

CVIT 2016

23:8 Formalizing the Solution to the Cap Set Problem

4 The Cap Set Bound259

As described in Section 2, Ellenberg and Gijswijt’s solution to the cap set problem [18]260

proceeds in two parts. The first part establishes an upper bound on the size of a cap set in261

terms of the dimension of a vector space of polynomials; the second part shows the asymptotic262

behavior of this bound. Our formalization is similarly divided, and in this section we describe263

the formal construction of the bound. Section 5 explains the verification of the asymptotics.264

Our construction of the bound is very faithful to Ellenberg and Gijswijt’s paper.265

We state the theorems here over an arbitrary finite field. We will take a fixed parameter266

α : Type instantiating the type classes [fintype α] and [discrete_field α], and267

use q to abbreviate the cardinality fintype.card α. In this section, we also fix a parameter268

n : N, representing the length of the tuples in the set whose cardinality we will bound.269

The goal of this section, then, is to define a function m and prove the following theorem,270

which corresponds to the informal statement of Theorem 1 above:271

272
theorem theorem_12_1 {α : Type} [discrete_field α] [fintype α]273

(n : N) {a b c : α} (hc : c 6= 0) (habc : a + b + c = 0)274

(hn : n > 0) {A : finset (fin n → α)}275

(ha : ∀ x y z ∈ A, a · x + b · y + c · z = 0 → x = y ∧ x = z) :276

A.card ≤ 3 * m α n (1 / 3 * ((card α - 1) * n))277278

Ellenberg and Gijswijt’s key insight is to translate the question to one concerning vector279

spaces of multivariate polynomials. After setting up this translation, this bound will follow280

from a sequence of intermediate lemmas. (NOTE: THEOREM NAMES WILL CHANGE)281

4.1 Setting up the polynomial method282

The type mv_polynomial (fin n) α forms a vector space, by results established in283

mathlib (Section 3). We will focus our attention on a particular subspace. We define M to284

be the set of monomials in n variables where the exponent of each variable is strictly less285

than q; this set is linearly independent with respect to α.286

287
def bdvec : finset (fin n →0 fin q) := finset.univ288

289

def M : finset (mv_polynomial (fin n) α) :=290

finset.image (λd : fin n →0 N, monomial d (1:α))291

(bdvec.image (λ f, f.map_range fin.val rfl))292293

For d : Q, we make the following definitions:294

M’ is the subset of M whose elements have total degree at most d.295

S’ is the span of M’; this is a subspace of mv_polynomial (fin n) α.296

m is the dimension of S’.297

Since M’ is linearly independent, it follows that the cardinality of M’ is equal to m.298

299
def M’ (d : Q) : finset (mv_polynomial (fin n) α) :=300

M.filter (λ m, d ≥ mv_polynomial.total_degree m)301

302

def S’ (d : Q) : submodule α (mv_polynomial (fin n) α) :=303

submodule.span α ((M’ d) : set (mv_polynomial (fin n) α))304

305

def m (d : Q) : N := (vector_space.dim α (S’ d)).to_nat306

307

lemma M’_card (d : Q) : (M’ d).card = m d :=308

by rw [m, S’, dim_span (linear_independent_M’ _),309

←cardinal.finset_card, cardinal.to_nat_coe]310311

S. R.Dahmen, J. Hölzl, and R. Y. Lewis 23:9

Much of the following argument will be carried out in a subspace of S’. We first define this312

subspace generically. Given a subspace of polynomials T and a set of vectors A, zero_set313

T A is the set of polynomials in T that evaluate to 0 at all elements of A. By basic properties314

of polynomial evaluation, this set is a subspace of T.315

316
parameters (T : subspace α (mv_polynomial (fin n) α))317

(A : finset (fin n → α))318

319

def zero_set : set (mv_polynomial (fin n) α) :=320

{p ∈ T.carrier | ∀ a ∈ A, mv_polynomial.eval a p = 0}321

322

def zero_set_subspace : subspace α (mv_polynomial (fin n) α) :=323

{ carrier := zero_set,324

zero := 〈submodule.zero, by simp〉,325

add := λ _ _ hx hy,326

〈submodule.add hx.1 hy.1, λ _ hp, by simp [hx.2 hp, hy.2 hp]〉,327

smul := λ _ _ hp,328

〈submodule.smul hp.1, λ _ hx, by simp [hp.2 hx]〉 }329330

Our target theorem takes as parameters a b c : α and A : finset (fin n → α)331

satisfying certain properties, in particular that c 6= 0. Let these terms be given. We define332

neg_cA to be the image of A under multiplication by -c, and V to be the zero set of S’ with333

respect to the complement of neg_cA.334

335
def neg_cA : finset (fin n → α) := A.image (λ z, (-c) · z)336

337

def V : subspace α (S’ d) :=338

zero_set_subspace (S’ d) (finset.univ \ neg_cA)339

340

def V_dim : N := (vector_space.dim α V).to_nat341342

Our goal—an upper bound on the cardinality of A, in terms of m—will follow from a343

number of lemmas controlling the dimension of V.344

4.2 Lemma 1: bounding the dimension from below345

The first lemma establishes a lower bound for the dimension of V in terms of m, q, and346

A.card. We prove this via a generic result that holds for every zero_set_subspace of a347

finite-dimensional space.348

349
theorem lemma_9_2 (T : subspace α (mv_polynomial (fin n) α))350

(A : finset (fin n → α)) :351

(vector_space.dim α zero_set_subspace).to_nat + A.card ≥352

(vector_space.dim α T).to_nat353354

This lemma is an exercise in linear algebra, following quickly from the rank-nullity355

theorem. The formal proof takes little work with our additions to the linear algebra theory356

in mathlib.357

We now set a parameter d : Q which will remain fixed until the end of this section.358

After specializing lemma_9_2 and performing a cardinality computation, we obtain via linear359

arithmetic:360

361
theorem lemma_12_2 : q^n + V_dim ≥ m d + A.card362363

The mathlib definition of vector_space.dim takes values in the type cardinal, since364

vector spaces are not restricted to finite dimensions. (Perhaps confusingly, finset.card365

CVIT 2016

23:10 Formalizing the Solution to the Cap Set Problem

and fintype.card take values in N.) In our setting, the vector space S’, and hence its366

subspace V, are finite dimensional. The cast cardinal.to_nat is thus well-behaved.367

4.3 Lemmas 2 and 3: bounding the dimension from above368

Next we establish an upper bound for the dimension of V. It is conceptually clearest to do369

this via two lemmas, one which bounds the dimension above by an intermediate value, and370

one which bounds this value above by m.371

To prove the first lemma, we define the support set of a polynomial to be the set of points372

on which it does not evaluate to 0:373

374
def sup (p : mv_polynomial (fin n) α) : finset (fin n → α) :=375

finset.univ.filter (λ x, p.eval x 6= 0)376377

A general argument about finite sets shows that there is some polynomial in V with378

maximal support.379

380
lemma exi_max_sup :381

∃ P ∈ V, ∀ P’ ∈ V, sup P ⊆ sup P’ → sup P = sup P’382383

We define P to be this polynomial and P_sup to be sup P, allowing us to state the384

following lemma:385

386
theorem lemma_12_3 : P_sup.card ≥ V_dim387388

The proof of this lemma involves some algebraic manipulation of the evaluation function389

mv_polynomial.eval. It invokes yet another polynomial subspace, the zero set of V with390

respect to P_sup.391

In order to relate P_sup to other more interesting constants, we must prove a second392

lemma:393

394
theorem lemma_12_4 : P_sup.card ≤ 2 * m (d/2)395396

This lemma is a special case of Proposition 4 in Section 2, stated here in Lean:397

398
theorem proposition_11_1 {p : mv_polynomial (fin n) α}399

(A : finset (fin n → α)) : p ∈ S’ n d →400

(∀ (x : fin n → α), x ∈ A → ∀ (y : fin n → α), y ∈ A →401

x 6= y → p.eval (a · x + b · y) = 0) →402

(A.filter (λ x, p.eval (-c · x) 6= 0)).card ≤ 2 * m (d / 2)403404

Proving this proposition requires the most intricate argument of our formalization. (We405

note that this is in line with Ellenberg and Gijswijt’s paper; their corresponding Proposition 2406

makes up nearly a third of the non-expository content.) Some of the intricacy comes407

from another shift of representation. Every student of linear algebra learns that linear408

transformations between finite-dimensional vector spaces can be represented by matrices,409

and it is standard in mathematics to conflate the two concepts. While our lemma (after410

unfolding the definition of P_sup) is stated in terms of the linear transformation p.eval,411

Ellenberg and Gijswijt’s argument proceeds more naturally in the matrix setting. Formalizing412

their argument required significant library development to unify the treatment of linear413

transformations and matrices in Lean. Of course, this development will be useful in future414

results that make use of linear algebra.415

The proof of proposition_11_1 proceeds briefly as follows. Given terms a b : α,416

x y : fin n → α, and p : mv_polynomial (fin n) α with p ∈ S’ d, the term417

p.eval (a · x + b · y) can be written as a linear combination of evaluated monomials418

S. R.Dahmen, J. Hölzl, and R. Y. Lewis 23:11

in M’ d. We define a A × A matrix B such that B x y = p.eval (a · x + b · y). In419

fact, we can factor the matrix B and express it in the following form:420
421

lemma B_eq_sum_matrix : B =422

split_left.sum (λ _ _, matrix.vec_mul_vec _ _) +423

split_right.sum (λ _ _, matrix.vec_mul_vec _ _)424425

(We direct interested readers to our formalization for the details of this computation.) Here,426

the cardinalities of the finite sets split_left and split_right are at most m (d/2).427

Since the product of two vectors matrix.vec_mul_vec has rank 1, this implies that B has428

rank at most 2 * m (d / 2). But in fact, B is a diagonal matrix, from which we can infer429

that its rank is equal to the cardinality we wish to bound.430

4.4 Lemma 4: a combinatorial calculation431

Our next lemma, largely independent of the previous ones, relates different values of m.432
433

theorem lemma_12_5 : q^n ≤ m ((q-1)*n - d) + m d434435

This lemma follows from a combinatorial argument on fin n → fin q, the type of436

n-tuples of natural numbers less than q. First, we define functions to map such a tuple to437

the monomial with corresponding coefficients, and in reverse:438
439

def monom : (fin n → fin q) → mv_polynomial (fin n) α440

def monom_exps : mv_polynomial (fin n) α → (fin n → fin q)441442

Note that these functions are inverses when we restrict fin n → fin q to the subset M.443

We then define five terms of type finset (fin n → fin q), including the universal444

set:445

I := finset.univ446

B := {v ∈ I // (total_degree (monom v)) ≤ d}447

C := {v ∈ I // (total_degree (monom v)) > d}448

D := {v ∈ I // (total_degree (monom v)) < (q-1)*n - d}449

E := {v ∈ I // (total_degree (monom v)) ≤ (q-1)*n - d}450

There are a number of straightforward cardinality calculations that follow. Among them,451

we show that B.card = m d, since B is the image of M’ d under monom_exps. It similarly452

holds that E.card = m ((q-1)*n - d). The function sending the tuple (a1, . . . , an) to453

(q − 1 − a1, . . . , q − 1 − an) is a bijection and maps C to D; thus these sets have the same454

cardinality. Combining these calculations leads us to our goal.455

Thanks to the large library of finset operations in mathlib, the proof of this lemma456

is basically frictionless. Indeed, the least pleasant part is checking that the bijection used is457

in fact a bijection, an argument that involves some trivial natural number arithmetic.458

4.5 Lemma 5: connecting these lemmas459

We have nearly achieved our goal for this section. Combining the previous four lemmas via460

linear arithmetic, we obtain the following:461
462

theorem lemma_12_6 : A.card ≤ 2 * m (d/2) + m ((q-1)*n - d) :=463

by linarith using [lemma_12_2, lemma_12_3, lemma_12_4, lemma_12_5]464465

Finally, abstracting the parameter d and instantiating it with 2/3*(q-1)*n delivers our466

desired bound.467
468

theorem theorem_12_1 : A.card ≤ 3*(m (1/3*((q-1)*n)))469470

CVIT 2016

23:12 Formalizing the Solution to the Cap Set Problem

5 Asymptotics471

We have shown an upper bound for the cardinality of a cap set A in terms of n. To be precise,472

this bound is proportional to the number of monomials in n variables with total degree at473

most (q-1)*n/3, where q is the cardinality of the underlying finite field.474

Our goal was to investigate the growth rate of this bound, in terms of n. In particular, we475

would like to show that it grows at a rate bounded above by c^n, for some c < q. Ellenberg476

and Gijswijt apply Cramér’s theorem, a fairly deep result in probability theory (not to be477

confused with Cramer’s rule), to derive this fact. But this detour is not necessary, and478

formalizing Cramér’s theorem would be a significant undertaking on its own. We verify the479

growth rate of the size of A using more elementary methods. While the results of this section480

could be stated in terms of O-notation [1], we favor a more explicit style, which allows us to481

state the q = 3 result in very concrete terms.482

Our goal is the following general statement:483

484
theorem general_cap_set {α : Type} [discrete_field α] [fintype α] :485

∃ B C : R, B > 0 ∧ C > 0 ∧ C < card α ∧486

∀ {a b c : α} {n : N} {A : finset (fin n → α)},487

n > 0 → c 6= 0 → a + b + c = 0 →488

(∀ x y z ∈ A, a · x + b · y + c · z = 0 → x = y ∧ x = z) →489

A.card ≤ B * C ^ n490491

Our motivating example asked about the case where the underlying field is Z/3Z. In this492

case, we can be more explicit about the growth rate:493

494
theorem cap_set : ∃ (B : R), ∀ {n : N}, n > 0 →495

∀ {A : finset (fin n → Z/3Z)},496

(∀ x y z ∈ A, x + y + z = 0 → x = y ∧ x = z) →497

A.card ≤ B * (((3/8) ^ 3 * (207 + 33 * sqrt 33)) ^ (1/3)) ^ n498499

Since we have that
3

√(
3
8

)3 (
207 + 33

√
33
)
≈ 2.755,

this result answers the cap set problem in the affirmative.500

To prove general_cap_set, we will show an alternate representation for m, and develop501

an argument that bounds this value from above in terms of n and d. This argument involves502

some combinatorial calculations similar to those in Section 4.4.503

In the previous section we worked with a fix parameter n, the length of our vectors. It504

is now necessary to abstract over this parameter. (We will keep the base field α and its505

cardinality q fixed.) Note that m depends on both n and a rational input d.506

5.1 Expressing m as a sum of coefficients507

Our first lemma will show that we can write m as a sum of coefficients depending on n and d.
On paper, we define

c
(n)
j :=

∣∣∣∣∣
{

(a1, . . . , an) | ai ∈ {0, 1, . . . , q − 1} and
n∑

i=1
ai = j

}∣∣∣∣∣ .
We again face a choice of how to represent these values in Lean. In Section 4.4, we508

represented such tuples (a1, . . . , an) with the type fin n → fin q. This type is very509

convenient when n is fixed, but a following lemma will proceed by induction on n, and510

S. R.Dahmen, J. Hölzl, and R. Y. Lewis 23:13

the function representation is cumbersome in this kind of argument. We choose instead511

to represent these tuples with the type vector (fin q) n, defined to be the subtype of512

list (fin q) whose elements have fixed length n. To connect with earlier results stated513

using the function representation, we will show a bijection between the two types. Moving514

between representations like this is aided by library support for establishing bijections and515

showing that relevant properties are preserved, and with the right support, it is far easier to516

carry out arguments in the “natural” setting.517

With this in mind, we define:518

519
def sf (n j : N) : finset (vector (fin q) n) :=520

finset.univ.filter (λ f, (f.nat_sum = j))521

522

def cf (n j : N) : N := (sf n j).card523524

Following the bijection between representations of tuples, and reusing some of the525

cardinality computations from Section 4.4, we show that m n d is equal to the sum of526

cf q n j for 0 ≤ j ≤ bdc:527

528
theorem lemma_13_8 (n : N) {d : Q} (hd : d ≥ 0) :529

m n d = (finset.range (bdc.nat_abs + 1)).sum (cf n)530531

To get a better handle on m, we would like a more algebraic representation of cf. As532

an intermediate step, we turn again to the setting of polynomials, this time univariate:533

we will show that for each j and n, c(n)
j is equal to the jth coefficient of the polynomial534

(1 + x+ . . .+ xq−1)n.535

It is here that we benefit from using the list representation for tuples, as we need to prove:536

537
lemma cf_mul (n j : N) : cf (n+2) j =538

(finset.range (j + 1)).sum (λ i, (cf 1 (j - i)) * cf (n + 1) i)539540

This combinatorial puzzle requires lifting (n+1)-tuples to (n+2)-tuples. Any (n+2)-tuple541

of natural numbers less than q whose values sum to j can be constructed by appending542

its last value k to an (n + 1)-tuple whose values sum to i = j − k. The number of such543

(n+ 2)-tuples, then, is the sum of the number of such (n+ 1)-tuples where i ranges from 0544

to max(q − 1, j). Since cf 1 k is 0 when k > q and 1 otherwise, this sum is equal to the545

expression in cf_mul.546

Counting arguments like this can make for entertaining puzzles on paper, but the pain547

of formalizing them can be compounded by using the wrong representation. We found548

that the lifting of tuples required for this argument was much more natural under the list549

representation for tuples; casts in the function representation became unwieldy.550

With this identity, and proceeding by induction on n, we can define the polynomial551

1 + x+ . . .+ xq−1 and show our desired result:552

553
def one_coeff_poly (m : N) : polynomial N :=554

(finset.range m).sum (λ k, (polynomial.X : polynomial N) ^ k)555

556

theorem lemma_13_9 (hq : q > 0) :557

∀ n j : N, ((one_coeff_poly q) ^ n).coeff j = cf n j558559

5.2 Evaluating polynomial coefficients560

We have not yet established an algebraic representation for cf. It is necessary to get a561

better handle on the coefficients of one_coeff_poly ^ n. A brief detour into estimates562

with complex numbers will result in the following bound:563

CVIT 2016

23:14 Formalizing the Solution to the Cap Set Problem

564
theorem lemma_13_10 (n : N) {r : R} (hr : r > 0) :565

cf n j ≤ (((one_coeff_poly q)^n).eval2 coe r) / r^j566567

Note that for p : polynomial N and r : R, p.eval2 coe r embeds the coefficients of568

p into the real numbers and evaluates the resulting polynomial at r.569

To obtain this bound, we will use a general result about complex polynomials. We570

derive this directly, but note that it also follows from general considerations about Laurent571

polynomials:572

573
def ζk (k : Z) : C := exp (2*π*I/k)574

575

lemma pick_out_coef {f : polynomial C} {i k : N} (h1 : k > i)576

(h2 : k > nat_degree f) {r : R} (h3 : r > 0) :577

(coeff f i) * k =578

(range k).sum (λ j, (eval (r*(ζk k)^j) f)/(r^i * (ζk k)^(i*j)))579580

When we instantiate f with the embedding of one_coeff_poly ^ n into C, we see581

that this complex sum is in fact a nonnegative real number for each i, since it is equal to582

cf i n. We can thus approximate its absolute value using the triangle inequality to derive583

lemma_13_10.584

5.3 Concrete bounds on m585

We can now write m in terms of the coefficients cf, and for each positive real r, we can586

bound cf from above in terms of r. It remains to establish a concrete upper bound on m.587

We will do so by defining another auxiliary value.588

589
def crq (r : R) (q : N) :=590

((one_coeff_poly q).eval2 coe r) / r ^ ((q-1)/3)591592

It is convenient to first establish a bound in the case where n is divisible by 3. The proof593

of this bound combines lemma_13_8 and lemma_13_10 with some elementary results about594

geometric sums.595

596
theorem lemma_13_11 (N : N) {r : R} (hr : 0 < r) (hr2 : r < 1) :597

m (3*N) ((q-1)*N) ≤ (1/(1-r)) * ((crq r q))^(3*N)598599

Recall that m n d is the number of monomials in n variables with total degree at most600

d. This number is clearly monotonic increasing in d; it is also easy to recognize that it is601

monotonic increasing in n, although formalizing this takes slightly more work. From these602

considerations and the previous lemma, we deduce:603

604
theorem theorem_13_13 (n : N) {r : R} (hr : 0 < r) (hr2 : r < 1) :605

(m n ((q - 1)*n / 3)) ≤ ((crq r q)^2 / (1 - r)) * (crq r q)^n606607

Since crq 1 q = q and the derivative of crq with respect to r is positive at r = 1, we608

have from elementary calculus:609

610
theorem lemma_13_15 : ∃ r : R, 0 < r ∧ r < 1 ∧ crq r q < q611612

Instantiating theorem_13_13 with this r, invoking theorem_12_1, and abstracting the613

type parameter α leads us to the theorem general_cap_set stated at the beginning of614

this section.615

We finally return to the original cap set problem with q = 3. Pen and paper calculations616

show that crq r 1 is minimized in r at r := (real.sqrt 33 - 1) / 8. Aided by the617

S. R.Dahmen, J. Hölzl, and R. Y. Lewis 23:15

numeral and ring normalization tactics in mathlib, we establish that 0 < r < 1 and618

that crq r 3 = ((3 / 8)^3 * (207 + 33*real.sqrt 33))^(1/3). Plugging this619

into theorem_13_13 concludes our proof.620

6 Related Work621

We are not aware of any existing formal developments that relate directly to the cap set622

problem or the polynomial method. Since the core library components of our proof are in623

combinatorics and number theory, linear algebra, and the theory of polynomials, we provide624

here a survey of formalizations in these areas. This incomplete list is meant to indicate the625

depth and flavor of such projects.626

The combinatorial arguments we employ are fairly simple results about involutions and627

the cardinalities of finite sets; similar developments exist in the libraries of most modern628

proof assistants. Gonthier’s proof of the four color theorem in Coq [19] includes some more629

sophisticated proofs. Dubois, Giorgetti, and Genestier [14] also provide a Coq library for630

enumerative combinatorics, again more sophisticated than what is needed in our proof.631

While the result of Ellenberg and Gijswijt is most clearly characterized as combinatorics,632

it is also of interest in number theory. There has been recent attention toward formalizing633

results in this area, including Eberl’s work on analytic number theory in Isabelle/HOL [16]634

and Lewis’ work on the p-adic numbers in Lean [26]. Chyzak, Mahboubi, Sibut-Pinote, and635

Tassi’s Coq proof that ζ(3) is irrational [7] is also relevant.636

Finite fields play an important role in combinatorics and number theory and are needed637

to state our general result. Chan and Norrish’s mechanization of the AKS algorithm [5]638

shows an approach to their study in HOL4, which makes for an interesting contrast with our639

approach in a dependently typed system. Their subsequent work [6] relates to ours in its640

study of polynomials over finite fields.641

Unsurprisingly, there are many formal proof developments of linear algebra. Our additions642

to mathlib were partially inspired by the impressive work of Gonthier in Coq [20], Lee [25]643

and Aransay and Divasón [2, 13] in Isabelle/HOL, and Harrison in HOL Light [24].644

Our formalization focuses in particular on the vector space of polynomials, also seen in645

Divasón and Aransay [12]. As with linear algebra, polynomials are a fundamental object of646

study in mathematics, and they appear in most proof assistant libraries. Some recent results647

concerning polynomials include Bernard, Bertot, Rideau, and Strub [3] and Eberl [15].648

7 Conclusion649

We have formalized Ellenberg and Gijswijt’s solution to the cap set problem, a recent and650

celebrated result in combinatorics. Our formalization is evidence that verifying certain651

cutting-edge mathematics is possible without enormous investments of time or resources.652

This effort was undertaken as part of the Lean Forward project, which aims to develop tools,653

tactics, and libraries to formalize modern results in number theory and related areas; much654

of the background theory we have implemented will be of future use in this project.655

At the outset of our efforts, the first author produced a detailed paper proof of the result,656

drawing from Ellenberg and Gijswijt and from Zeilberger [33] and adapting the asymptotics657

part significantly. We used this writeup as a blueprint for our formalization. It was heartening658

to see that the blueprint translated very directly to Lean. We were able to work at a similar659

level of abstraction as the original sources without any complications introduced by the proof660

assistant.661

CVIT 2016

23:16 Formalizing the Solution to the Cap Set Problem

As always, it is difficult to compare the length of formal proofs with their paper counter-662

parts, since the background assumptions and level of detail differ significantly. Nevertheless,663

we can provide some approximate information. Ellenberg and Gijswijt’s paper contains just664

over two pages of mathematical work. Our blueprint is sixteen pages long; the first six pages665

are preliminary material. The remaining ten pages correspond to around 2500 lines of our666

formalization. (This does not represent our entire effort: thousands more lines of general667

definitions and proofs were added to mathlib as part of this project.) The ratio of 2500668

lines of formal proof to two pages of paper proof is perhaps misleading, since we take a more669

verbose approach to checking the asymptotic behavior of the upper bound. (Ellenberg and670

Gijswijt take only one paragraph to invoke Cramér’s theorem.) A better comparison is the671

part of the proof described in Section 4: 900 formal lines subsume a page and a half of paper672

proof. The corresponding section of our detailed writeup is just under five pages.673

This formalization, and mathlib more generally, rely heavily on hierarchies of type674

classes. In some sections of our proof—particularly those involving linear subspaces of the675

type of multivariate polynomials—we found that type class inference behaved erratically.676

The backtracking search performed by Lean’s elaborator is sensitive to many features, and677

import order and additional instances can greatly affect the depth and speed of the search.678

We ended up revising the hierarchy in parts of mathlib to simplify this. A moral we have679

taken from this project is that “misleading” instances that lead the elaborator down a long680

and ultimately unsuccessful path can be nearly as dangerous as circular instances.681

References682

1 Reynald Affeldt, Cyril Cohen, and Damien Rouhling. Formalization Techniques for Asymptotic683

Reasoning in Classical Analysis. Journal of Formalized Reasoning, October 2018. URL:684

https://hal.inria.fr/hal-01719918.685

2 Jesús Aransay and Jose Divasón. Formalization and execution of linear algebra: From theorems686

to algorithms. In Gopal Gupta and Ricardo Peña, editors, Logic-Based Program Synthesis687

and Transformation, pages 1–18, Cham, 2014. Springer International Publishing.688

3 Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of689

transcendence for e and pi as an application of multivariate and symmetric polynomials. In690

Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP691

2016, pages 76–87, New York, NY, USA, 2016. ACM. doi:10.1145/2854065.2854072.692

4 Mario Carneiro. The Lean 3 mathematical library (presentation), July 2018. URL: http:693

//robertylewis.com/files/icms/Carneiro_mathlib.pdf.694

5 Hing-Lun Chan and Michael Norrish. Mechanisation of AKS algorithm: Part 1 – the main695

theorem. In Christian Urban and Xingyuan Zhang, editors, Interactive Theorem Proving,696

pages 117–136, Cham, 2015. Springer International Publishing.697

6 Hing-Lun Chan and Michael Norrish. Proof pearl: Bounding least common multiples with698

triangles. In Jasmin Christian Blanchette and Stephan Merz, editors, Interactive Theorem699

Proving, pages 140–150, Cham, 2016. Springer International Publishing.700

7 Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, and Enrico Tassi. A computer-701

algebra-based formal proof of the irrationality of ζ(3). In Gerwin Klein and Ruben Gamboa,702

editors, Interactive Theorem Proving, pages 160–176, Cham, 2014. Springer International703

Publishing.704

8 Thierry Coquand and Christine Paulin. Inductively defined types. In COLOG-88 (Tallinn,705

1988), volume 417 of Lec. Notes in Comp. Sci., pages 50–66. Springer, Berlin, 1990. doi:706

10.1007/3-540-52335-9_47.707

9 Ernie Croot, Vsevolod F. Lev, and Péter Pál Pach. Progression-free sets in Zn
4 are exponentially708

small. Ann. of Math. (2), 185(1):331–337, 2017. doi:10.4007/annals.2017.185.1.7.709

https://hal.inria.fr/hal-01719918
http://dx.doi.org/10.1145/2854065.2854072
http://robertylewis.com/files/icms/Carneiro_mathlib.pdf
http://robertylewis.com/files/icms/Carneiro_mathlib.pdf
http://robertylewis.com/files/icms/Carneiro_mathlib.pdf
http://dx.doi.org/10.1007/3-540-52335-9_47
http://dx.doi.org/10.1007/3-540-52335-9_47
http://dx.doi.org/10.1007/3-540-52335-9_47
http://dx.doi.org/10.4007/annals.2017.185.1.7

S. R.Dahmen, J. Hölzl, and R. Y. Lewis 23:17

10 N. G. de Bruijn. AUTOMATH, a Language for Mathematics, pages 159–200. Springer Berlin710

Heidelberg, Berlin, Heidelberg, 1983. doi:10.1007/978-3-642-81955-1_11.711

11 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.712

The Lean theorem prover. 2014. URL: http://leanprover.github.io/files/system.713

pdf.714

12 Jose Divasón, Sebastiaan Joosten, René Thiemann, and Akihisa Yamada. A formalization of715

the Berlekamp-Zassenhaus factorization algorithm. In Proceedings of the 6th ACM SIGPLAN716

Conference on Certified Programs and Proofs, CPP 2017, pages 17–29, New York, NY, USA,717

2017. ACM. doi:10.1145/3018610.3018617.718

13 Jose Divasón and Jesús Aransay. Rank-nullity theorem in linear algebra. Archive of Formal719

Proofs, January 2013. http://isa-afp.org/entries/Rank_Nullity_Theorem.html,720

Formal proof development.721

14 Catherine Dubois, Alain Giorgetti, and Richard Genestier. Tests and proofs for enumerative722

combinatorics. In Bernhard K. Aichernig and Carlo A. Furia, editors, Tests and Proofs, pages723

57–75, Cham, 2016. Springer International Publishing.724

15 Manuel Eberl. Symmetric polynomials. Archive of Formal Proofs, September 2018. http:725

//isa-afp.org/entries/Symmetric_Polynomials.html, Formal proof development.726

16 Manuel Eberl. Nine chapters of analytic number theory in Isabelle/HOL. 2019. Draft,727

Submitted to ITP2019? URL: https://www21.in.tum.de/~eberlm/ant.pdf.728

17 Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A729

metaprogramming framework for formal verification. Proceedings of the ACM on Programming730

Languages, 1(ICFP):34, 2017.731

18 Jordan S. Ellenberg and Dion Gijswijt. On large subsets of Fn
q with no three-term arithmetic732

progression. Ann. of Math. (2), 185(1):339–343, 2017. doi:10.4007/annals.2017.185.733

1.8.734

19 Georges Gonthier. The four colour theorem: Engineering of a formal proof. In Deepak Kapur,735

editor, Computer Mathematics, pages 333–333, Berlin, Heidelberg, 2008. Springer Berlin736

Heidelberg.737

20 Georges Gonthier. Point-free, set-free concrete linear algebra. In Marko van Eekelen, Herman738

Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Interactive Theorem Proving, pages739

103–118, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.740

21 Sébastien Gouëzel and Vladimir Shchur. A corrected quantitative version of the Morse lemma.741

arXiv preprint arXiv:1810.04579, 2018.742

22 Larry Guth. Polynomial methods in combinatorics, volume 64 of University Lecture Series.743

American Mathematical Society, Providence, RI, 2016.744

23 Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong,745

Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A formal proof746

of the Kepler conjecture. In Forum of Mathematics, Pi, volume 5. Cambridge University Press,747

2017.748

24 John Harrison. The HOL Light theory of euclidean space. J. Autom. Reason., 50(2):173–190,749

February 2013. doi:10.1007/s10817-012-9250-9.750

25 Holden Lee. Vector spaces. Archive of Formal Proofs, August 2014. http://isa-afp.org/751

entries/VectorSpace.html, Formal proof development.752

26 Robert Y. Lewis. A formal proof of Hensel’s lemma over the p-adic integers. In Proceedings753

of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP754

2019, pages 15–26, New York, NY, USA, 2019. ACM. doi:10.1145/3293880.3294089.755

27 Roman Matuszewski and Piotr Rudnicki. Mizar: the first 30 years. Mechanized Ma, 4(1):3–24,756

March 2005.757

28 Bas Spitters and Eelis van der Weegen. Type classes for mathematics in type theory. Mathe-758

matical Structures in Computer Science, 21(4):795–825, 2011.759

CVIT 2016

http://dx.doi.org/10.1007/978-3-642-81955-1_11
http://leanprover.github.io/files/system.pdf
http://leanprover.github.io/files/system.pdf
http://leanprover.github.io/files/system.pdf
http://dx.doi.org/10.1145/3018610.3018617
http://isa-afp.org/entries/Rank_Nullity_Theorem.html
http://isa-afp.org/entries/Symmetric_Polynomials.html
http://isa-afp.org/entries/Symmetric_Polynomials.html
http://isa-afp.org/entries/Symmetric_Polynomials.html
https://www21.in.tum.de/~eberlm/ant.pdf
http://dx.doi.org/10.4007/annals.2017.185.1.8
http://dx.doi.org/10.4007/annals.2017.185.1.8
http://dx.doi.org/10.4007/annals.2017.185.1.8
http://dx.doi.org/10.1007/s10817-012-9250-9
http://isa-afp.org/entries/VectorSpace.html
http://isa-afp.org/entries/VectorSpace.html
http://isa-afp.org/entries/VectorSpace.html
http://dx.doi.org/10.1145/3293880.3294089

23:18 Formalizing the Solution to the Cap Set Problem

29 Terence Tao. Algebraic combinatorial geometry: the polynomial method in arithmetic760

combinatorics, incidence combinatorics, and number theory. EMS Surv. Math. Sci., 1(1):1–46,761

2014. doi:10.4171/EMSS/1.762

30 Terry Tao and Will Sawin. Notes on the “slice rank” of tensors, August 2016. URL: https:763

//terrytao.wordpress.com/tag/polynomial-method/.764

31 Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz. Homotopy type theory in Lean.765

In Mauricio Ayala-Rincón and César A. Muñoz, editors, Interactive Theorem Proving, pages766

479–495. Springer International Publishing, 2017.767

32 P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the768

16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL769

’89, pages 60–76, New York, NY, USA, 1989. ACM. doi:10.1145/75277.75283.770

33 Doron Zeilberger. A motivated rendition of the Ellenberg–Gijswijt gorgeous proof that771

the largest subset of Fn
3 with no three-term arithmetic progression is O(cn), with c =772

3
√

(5589 + 891
√

33)/8 = 2.75510461302363300022127 arXiv preprint arXiv:1607.01804,773

2016.774

http://dx.doi.org/10.4171/EMSS/1
https://terrytao.wordpress.com/tag/polynomial-method/
https://terrytao.wordpress.com/tag/polynomial-method/
https://terrytao.wordpress.com/tag/polynomial-method/
http://dx.doi.org/10.1145/75277.75283

	Introduction
	Mathematical Background
	Lean and its Mathematics Library
	The Cap Set Bound
	Setting up the polynomial method
	Lemma 1: bounding the dimension from below
	Lemmas 2 and 3: bounding the dimension from above
	Lemma 4: a combinatorial calculation
	Lemma 5: connecting these lemmas

	Asymptotics
	Expressing m as a sum of coefficients
	Evaluating polynomial coefficients
	Concrete bounds on m

	Related Work
	Conclusion

