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bfseries Motivation



Formal mathematics

Proof assistants have seen lots of success in computer science applications.

Less in mathematics, outside of some noteworthy large-scale projects.

Across various systems: a good amount of undergraduate mathematics, a fewmajor
standalone projects.
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Formal mathematics

Some problems:
Most significant mathematical results rely on lots of background theory.
Di�erent theorems rely on di�erent backgrounds, even when they come from the
same subfields.
Focusing on single theorems leads to irregular coverage of background theory.
Automation needs to “keep pace” with the theory: di�erent fields benefit from
di�erent kinds of proof search.
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Lean Forward

A new project at the VU: formalize modern results in number theory, in Lean.

Develop comprehensive libraries that will help with many results.
Target “research areas”/collections of moderate di�iculty results, instead of single
challenge theorems.
Work on the system and automation alongside the formalizing.
PI: Jasmin Blanchette
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Can we formalize current results yet?

Sander Dahmen’s first proposal: formalize Ellenberg and Gijswijt’s solution to the cap set
problem.

Recent: Annals of Mathematics, 2017
The theorem can be stated in elementary terms.
The proof does not depend on any high-powered results, but. . .
it uses a lot of elementary linear algebra: a good stress test.
The “second half” of the proof can bemade evenmore elementary.
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Can we formalize current results yet? Yes! *

We have completed a proof of Ellenberg and Gijswijt’s theorem in Lean.

The first half of our proof is faithful to their argument.
The second half takes a muchmore elementary approach.
A lot of linear algebra, combinatorics, etc. was added to Lean’s mathlib.
We followed a detailed informal blueprint by Sander.

Paper and blueprint: https://lean-forward.github.io/e-g/

(*) This was a very special case.
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bfseries The cap set problem



The cap set problem
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The cap set problem

Specific statement

Let r3(G) denote the cardinality of a largest subset of an abelian group G containing no
three-term arithmetic progression. Is there a constant c < 3 such that r3((Z/3Z)n) grows in
n no faster than cn?

General statement
Let α, β, γ ∈ Fq such that α+ β + γ = 0 and γ 6= 0. Let A be a largest subset of Fnq such
that the equation αa1 + βa2 + γa3 = 0 has no solutions with a1, a2, a3 ∈ A apart from
those with a1 = a2 = a3. Is there a constant c < q such that |A| grows in n no faster than cn?

Theorem (Ellenberg and Gijswijt, Annals of Mathematics, 2017)

Yes.
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The cap set problem

Ellenberg and Gijswijt follow a breakthrough due to Croot, Lev, and Pach.

Idea: translate the problem to one about systems or spaces of polynomials. (the
polynomial method)

1. Bound the size of the cap set by the dimension of a subspace of polynomials with
coe�icients in Fq.

2. Control the asymptotic behavior of this bound.
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The cap set problem

1. Bound the size of the cap set by the dimension of a subspace of polynomials with
coe�icients in Fq.

2. Control the asymptotic behavior of this bound.

Ellenberg and Gijswijt use only “elementary” methods in step 1.

Tao, Zeilberger, and others have proposed elementary methods for step 2.

We further elementarize step 2.
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The cap set problem in Lean

theorem general_cap_set {α : Type} [discrete_field α] [fintype α] :
∃ C B : R, B > 0 ∧ C > 0 ∧ C < fintype.card α ∧
∀ {a b c : α} {n : N} {A : finset (fin n → α)},

c 6= 0 → a + b + c = 0 →
(∀ x y z : fin n → α, x ∈ A → y ∈ A → z ∈ A →

a · x + b · y + c · z = 0 → x = y ∧ x = z) →
↑A.card ≤ B * C^n
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bfseries Formalization: constructing the bound



Preliminaries

Goal:

theorem theorem_12_1 {α : Type} [discrete_field α] [fintype α]
(n : N) {a b c : α} (hc : c 6= 0) (habc : a + b + c = 0)
(hn : n > 0) {A : finset (fin n → α)}
(ha : ∀ x y z ∈ A, a · x + b · y + c · z = 0 → x = y ∧ x = z) :
A.card ≤ 3 * m α n (1 / 3 * ((card α - 1) * n))

We fix a parameter α : Type instantiating the type classes [discrete_field α] and
[fintype α], and n : N. We use q : N to abbreviate card α.
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Preliminaries

For d : Q, we make the following definitions:
M is the set of monomials in n variables where the exponent of each variable is less
than q.
M' is the subset of Mwhose elements have total degree at most d.
S' is the span of M'. This is a subspace of mv_polynomial (fin n) α.
m is the dimension of S'.

Since M' is linearly independent, it follows that the cardinality of M' is equal to m.
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Preliminaries

def M : finset (mv_polynomial (fin n) α) :=
(finset.univ.image

(λ f : fin n →0 fin q, f.map_range fin.val rfl)).image
(λ v : fin n →0 N, monomial v (1:α))

def M' (d : Q) : finset (mv_polynomial (fin n) α) :=
M.filter (λ m, d ≥ mv_polynomial.total_degree m)

def S' (d : Q) : subspace α (mv_polynomial (fin n) α) :=
submodule.span α ((M' d) : set (mv_polynomial (fin n) α))

def m (d : Q) : N := (vector_space.dim α (S' d)).to_nat

lemma M'_card (d : Q) : (M' d).card = m d
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Preliminaries

parameters (T : subspace α (mv_polynomial (fin n) α))
(A : finset (fin n → α))

def zero_set : set (mv_polynomial (fin n) α) :=
{p ∈ T.carrier | ∀ a ∈ A, mv_polynomial.eval a p = 0}

def zero_set_subspace : subspace α (mv_polynomial (fin n) α) :=
{ carrier := zero_set,

zero := 〈submodule.zero, by simp〉,
add := λ _ _ hx hy,
〈submodule.add hx.1 hy.1, λ _ hp, by simp [hx.2 hp, hy.2 hp]〉,

smul := λ _ _ hp,
〈submodule.smul hp.1, λ _ hx, by simp [hp.2 hx]〉 }
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Preliminaries

Our goal was:
theorem theorem_12_1 {α : Type} [discrete_field α] [fintype α]

(n : N) {a b c : α} (hc : c 6= 0) (habc : a + b + c = 0)
(hn : n > 0) {A : finset (fin n → α)}
(ha : ∀ x y z ∈ A, a · x + b · y + c · z = 0 → x = y ∧ x = z) :
A.card ≤ 3 * m α n (1 / 3 * ((card α - 1) * n))

Fix the hypotheses, and define:

def neg_cA : finset (fin n → α) := A.image (λ z, (-c) · z)

def V : subspace α (S' d) :=
zero_set_subspace (S' d) (finset.univ \ neg_cA)

def V_dim : N := (vector_space.dim α V).to_nat

We prove a sequence of lemmas controlling V_dim.
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Bounding from below

A general theorem (following from rank-nullity):

theorem lemma_9_2 (T : subspace α (mv_polynomial (fin n) α))
(A : finset (fin n → α)) :
(vector_space.dim α zero_set_subspace).to_nat + A.card ≥

(vector_space.dim α T).to_nat

From this, we derive:

lemma diff_card_comp : (finset.univ \ neg_cA).card + A.card = q^n :=
by rw [finset.card_univ_diff, fintype.card_fin_arrow, neg_cA_card,

nat.sub_add_cancel A_card_le_α_card_n]; refl

theorem lemma_12_2 : q^n + V_dim ≥ m d + A.card :=
have V_dim + (finset.univ \ neg_cA).card ≥ m d,

from lemma_9_2 _ _ V_dim_finite,
by linarith [diff_card_comp]
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Bounding from above

There is a polynomial in Vwith maximal support:

lemma exi_max_sup :
∃ P ∈ V, ∀ P' ∈ V, sup P ⊆ sup P' → sup P = sup P'

Define P to be a witness to this.

theorem lemma_12_3 : (sup P).card ≥ V_dim

18 36



Bounding from above

theorem lemma_12_4 : (sup P).card ≤ 2 * m (d/2)

This follows from amore general result:

theorem prop_11_1 {p : mv_polynomial (fin n) α} (A : finset (fin n → α)) :
p ∈ S' n d → (∀ x ∈ A, ∀ y ∈ A, x 6= y → p.eval (a · x + b · y) = 0) →
(A.filter (λ x, p.eval (-c · x) 6= 0)).card ≤ 2 * m (d / 2)

Proposition (Ellenberg and Gijswijt)

Let A ⊆ Fnq and α, β, γ ∈ Fq with α+ β + γ = 0. Let P ∈ Sdn such that for all a, b ∈ Awith
a 6= bwe have P(αa+ βb) = 0. Then

|{a ∈ A | P(−γa) 6= 0}| ≤ 2md/2.
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Proposition 11.1

This was the most intricate proof in our development.
I (In line with E-G. This lemmamakes upmost of their paper.)

Stated in terms of the linear transormation p.eval, but more naturally proved with
matrices.
Needed to extend libraries to unify these two concepts.
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Proposition 11.1 proof sketch

Given a b : α, x y : fin n → α, p : mv_polynomial (fin n) αwith p ∈ S' d:

p.eval (a · x + b · y) can be written as a linear combination of evaluated
monomials in M' d.
Define an A × Amatrix B such that B x y = p.eval (a · x + b · y).
Prove that B factors:

lemma B_eq_sum_matrix : B =
split_left.sum (λ _ _, matrix.vec_mul_vec _ _) +
split_right.sum (λ _ _, matrix.vec_mul_vec _ _)

Cardinalities of the finite sets split_left and split_right are at most m (d/2).
Rank of B is at most 2 * m (d/2), since matrix.vec_mul_vec has rank at most 1.
But B is diagonal, so its rank is equal to what we want to bound.
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A combinatorial calculation

The last lemma relates values of m at di�erent inputs.

theorem lemma_12_5 : q^n ≤ m ((q-1)*n - d) + m d

Largely independent of the previous lemmas.
Go by carving up the space fin n → fin q into subsets.
The encoding matters!
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Putting things together

theorem lemma_12_6 : A.card ≤ 2 * m (d/2) + m ((q-1)*n - d) :=
by linarith using [lemma_12_2, lemma_12_3, lemma_12_4, lemma_12_5]

Abstracting the parameter d and instantiating it with 2/3*(q-1)*n:

theorem theorem_12_1 : A.card ≤ 3*(m (1/3*((q-1)*n)))
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Intermission: how do the proofs look?



bfseries Formalization: asymptotics



Controlling the growth of our bound

Wewant to know how our bound grows in n.

theorem theorem_12_1 : A.card ≤ 3*(m (1/3*((q-1)*n)))

Recall:
m d is the number of monomials with total degree at most d.
q is the cardinality of the underlying field α.
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Controlling the growth of our bound

theorem general_cap_set {α : Type} [discrete_field α] [fintype α] :
∃ B C : R, B > 0 ∧ C > 0 ∧ C < card α ∧
∀ {a b c : α} {n : N} {A : finset (fin n → α)},

c 6= 0 → a + b + c = 0 →
(∀ x y z ∈ A, a · x + b · y + c · z = 0 → x = y ∧ x = z) →
A.card ≤ B * C^n

It su�ices:

theorem general_cap_set' {α : Type} [discrete_field α] [fintype α] :
∃ B C : R, B > 0 ∧ C > 0 ∧ C < card α ∧ 3*(m n (1/3*((q-1)*n))) ≤ B * C^n

25 36



m as a sum of coe�icients

Wewill rewrite m as a sum of coe�icients of a certain polynomial.

Informally, we define:

c(n)j :=

∣∣∣∣∣
{
(a1, . . . , an)

∣∣∣∣∣ ai ∈ {0, 1, . . . , q− 1} and
n∑
i=1

ai = j

}∣∣∣∣∣ .
How to encode these tuples in Lean?
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m as a sum of coe�icients

def sf (n j : N) : finset (vector (fin q) n) :=
finset.univ.filter (λ f, (f.nat_sum = j))

def cf (n j : N) : N := (sf n j).card

where vector A n is defined as a subtype of lists:

def vector (α : Type u) (n : N) := { l : list α // l.length = n }

def vector.cons : α → vector α n → vector α (nat.succ n)
| a 〈 v, h 〉 := 〈 a::v, congr_arg nat.succ h 〉
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m as a sum of coe�icients

theorem lemma_13_8 (n : N) {d : Q} (hd : d ≥ 0) :
m n d = (finset.range (bdc.nat_abs + 1)).sum (cf n)

The proof applies a result from before:

lemma h_B_card : m n d = (univ : finset (fin n → fin q)).filter (λ v,
(total_degree (monom v)) ≤ d)

We establish an isomorphism between the two vector representations.
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m as a sum of coe�icients

def sf (n j : N) : finset (vector (fin q) n) :=
finset.univ.filter (λ f, (f.nat_sum = j))

def cf (n j : N) : N := (sf n j).card

lemma cf_mul (n j : N) : cf (n+2) j =
(finset.range (j + 1)).sum (λ i, (cf 1 (j - i)) * cf (n + 1) i)

This involves li�ing n-tuples to n+1-tuples. Much easier to do with the vector
representation.
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m as a sum of coe�icients

We relate cf n j to coe�icients of the polynomial
(
1+ x + . . .+ xq−1

)n:
def one_coeff_poly (m : N) : polynomial N :=
(finset.range m).sum (λ k, (polynomial.X : polynomial N) ^ k)

theorem lemma_13_9 (hq : q > 0) (n j : N) :
((one_coeff_poly q) ^ n).coeff j = cf n j
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m as a sum of coe�icients

theorem lemma_13_10 (n : N) {r : R} (hr : r > 0) :
cf n j ≤ (((one_coeff_poly q)^n).eval2 coe r) / r^j

Obtained via a detour into complex numbers:

def ζk (k : Z) : C := exp (2*π*I/k)

lemma pick_out_coef {f : polynomial C} {i k : N} (h1 : k > i)
(h2 : k > nat_degree f) {r : R} (h3 : r > 0) :
(coeff f i) * k =

(range k).sum (λ j, (eval (r*(ζk k)^j) f)/(r^i * (ζk k)^(i*j)))

(and some tedious inequality computations)
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Concrete bounds onm

Defining

def crq (r : R) (q : N) :=
((one_coeff_poly q).eval2 coe r) / r ^ ((q-1)/3)

and combining
cf n j ≤ (((one_coeff_poly q)^n).eval2 coe r) / r^j

m n d = (finset.range (bdc.nat_abs + 1)).sum (cf n)

we get

theorem theorem_13_13 (n : N) {r : R} (hr : 0 < r) (hr2 : r < 1) :
(m n ((q - 1)*n / 3)) ≤ ((crq r q)^2 / (1 - r)) * (crq r q)^n
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Concrete bounds onm

Since crq 1 q = q and the derivative of crqwith respect to r is positive at r = 1, we have
from elementary calculus:

theorem lemma_13_15 : ∃ r : R, 0 < r ∧ r < 1 ∧ crq r q < q

Along with the previous theorem and theorem_12_1, we have proved our desired result:

theorem theorem_13_13 (n : N) {r : R} (hr : 0 < r) (hr2 : r < 1) :
(m n ((q - 1)*n / 3)) ≤ ((crq r q)^2 / (1 - r)) * (crq r q)^n

theorem theorem_12_1 : A.card ≤ 3*(m n (1/3*((q-1)*n)))

33 36



Evenmore concrete bounds

For the motivating case when q = 3, we compute the optimal value
r := (real.sqrt 33 - 1) / 8.

We show 0 < r < 1 and crq r 3 = ((3 / 8)^3 * (207 + 33*real.sqrt 33))^(1/3)

(which is approximately 2.76).

theorem cap_set {n : N} {A : finset (fin n → Z/3Z)} :
(∀ x y z ∈ A, x + y + z = 0 → x = y ∧ x = z) →
A.card ≤ 198 * (((3/8) ^ 3 * (207 + 33 * sqrt 33)) ^ (1/3)) ^ n
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bfseries Morals



Statistics

Ellenberg–Gijswijt proof: about 2 pages of content. (construction of bound: 1.5 pages)
Our informal writeup: 10 pages of non-background content (construction of bound: 5
pages)
Our formalization: 2500 lines (construction of bound: 900 lines)
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Morals

This is formalized contemporary math—rare!
It was “smooth” (for a formalization).
As is o�en the case: library development may have been the biggest gain.
Collaboration was essential.
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