
The Lean theorem prover, for mathematicians

Robert Y. Lewis

Carnegie Mellon University
http://andrew.cmu.edu/user/rlewis1

http://leanprover.github.io

December 1, 2017

http://andrew.cmu.edu/user/rlewis1
http://leanprover.github.io


Slide credit

Some slides have been borrowed from Jeremy Avigad and Leonardo
de Moura – thanks!



Outline

I want to make the following points:

• Formalizing mathematics is difficult but possible.

• There are many plausible foundations for formalized
mathematics.

• Dependent type theory is one good foundational choice.
• It is a particularly elegant and expressive language.
• It is convenient for formalizing abstract algebraic notions.
• It can express mathematical processes or techniques alongside

theories.

• Formalizing mathematics is easier when we have access to
common processes and techniques.



TOC

Introduction

Lean and metaprogramming

Linking Lean and Mathematica

Solving nonlinear inequalities



Background: Lean

Lean is a new interactive theorem prover, developed principally by
Leonardo de Moura at Microsoft Research, Redmond.

Calculus of constructions with:

• Non-cumulative hierarchy of universes

• Impredicative Prop

• Quotient types and propositional extensionality

• Axiom of choice available

See http://leanprover.github.io

http://leanprover.github.io


Contributors

Code base: Leonardo de Moura, Gabriel Ebner, Sebastian Ullrich,
Jared Roesch, Daniel Selsam

Libraries: Jeremy Avigad, Floris van Doorn, Leonardo de Moura,
Robert Lewis, Gabriel Ebner, Johannes Hölzl, Mario Carneiro

Past project members: Soonho Kong, Jakob von Raumer



Lean mathematics library

The standard mathematics library contains:

• Basic algebraic structures

• Number structures through C
• Programming data structures

• Real analysis, measure theory

• Set theory

• Tactics for reasoning with the above

• . . . and more to come

https://github.com/leanprover/mathlib

https://github.com/leanprover/mathlib


Encoding proofs

theorem sqrt_two_irrational {a b : N} (co : coprime a b) :
a^2 6= 2 * b^2 :=

assume H : a^2 = 2 * b^2,
have even (a^2),

from even_of_exists (exists.intro H),
have even a,

from even_of_even_pow this,
obtain (c : N) (aeq : a = 2 * c),

from exists_of_even this,
have 2 * (2 * c^2) = 2 * b^2,

by rewrite [-H, aeq, *pow_two, mul.assoc, mul.left_comm c],
have 2 * c^2 = b^2,

from eq_of_mul_eq_mul_left dec_trivial this,
have even (b^2),

from even_of_exists (exists.intro _ (eq.symm this)),
have even b,

from even_of_even_pow this,
assert 2 | gcd a b,

from dvd_gcd (dvd_of_even ‘even a‘) (dvd_of_even ‘even b‘),
have 2 | 1,

by rewrite [gcd_eq_one_of_coprime co at this]; exact this,
show false,

from absurd ‘2 | 1‘ dec_trivial



One language fits all

In simple type theory, we distinguish between

• types

• terms

• propositions

• proofs

Dependent type theory is flexible enough to encode them all in the
same language.

It can also encode programs, since terms have computational
meaning.



Lean as a programming language

Think of + as a program. An expression like 12 + 45 will reduce or
evaluate to 57.

But + is defined as unary addition – inefficient!

Lean implements a virtual machine which performs fast, untrusted
evaluation of Lean expressions.



Lean as a programming language

There are algebraic structures that provides an interface to
terminal and file I/O.

Lean’s built-in package manager is implemented entirely in Lean.



Lean as a programming language

Definitions tagged with meta are “VM only,” and allow unchecked
recursive calls.

meta def f : N → N
| n := if n=1 then 1

else if n%2=0 then f (n/2)

else f (3*n + 1)

#eval (list.iota 1000).map f



Metaprogramming in Lean

Question: How can one go about writing tactics and automation?

Various answers:

• Use the underlying implementation language (ML, OCaml,
C++, . . . ).

• Use a domain-specific tactic language (LTac, MTac, Eisbach,
. . . ).

• Use reflection (RTac).



Metaprogramming in Lean

Lean’s answer: go meta, and use Lean itself.

(MTac, Idris, and now Agda do the same, with variations.)

Advantages:

• Users don’t have to learn a new programming language.

• The entire library is available.

• Users can use the same infrastructure (debugger, profiler,
etc.).

• Users develop metaprograms in the same interactive
environment.

• Theories and supporting automation can be developed
side-by-side.



Metaprogramming in Lean

The method:

• Add an extra (meta) constant: tactic_state.

• Reflect expressions with an expr type.

• Add (meta) constants for operations which act on the tactic
state and expressions.

• Have the virtual machine bind these to the internal
representations.

• Use a tactic monad to support an imperative style.

Definitions which use these constants are clearly marked meta, but
they otherwise look just like ordinary definitions.



Metaprogramming in Lean

meta def find : expr → list expr → tactic expr

| e [] := failed

| e (h :: hs) :=

do t ← infer_type h,

(unify e t >> return h) <|> find e hs

meta def assumption : tactic unit :=

do { ctx ← local_context,

t ← target,

h ← find t ctx,

exact h }

<|> fail "assumption tactic failed"

lemma simple (p q : Prop) (h1 : p) (h2 : q) : q :=

by assumption



Metaprogramming in Lean

meta def p_not_p : list expr → list expr → tactic unit

| [] Hs := failed

| (H1 :: Rs) Hs :=

do t ← infer_type H1,

(do a ← match_not t,

H2 ← find_same_type a Hs,

tgt ← target,

pr ← mk_app ‘absurd [tgt, H2, H1],

exact pr)

<|> p_not_p Rs Hs

meta def contradiction : tactic unit :=

do ctx ← local_context,

p_not_p ctx ctx

lemma simple (p q : Prop) (h1 : p) (h2 : ¬p) : q :=

by contradiction



TOC

Introduction

Lean and metaprogramming

Linking Lean and Mathematica

Solving nonlinear inequalities



CAS and ITP

CAS strengths:

• Easy and useful

• Instant gratification

• Interactive use, exploration

• Pogrammable and extensible

CAS weaknesses:

• Focus on symbolic
computation, not abstract
definitions and assertions

• Not designed for reasoning

• Murky or nonexistent
semantics

ITP strengths:

• Languages are expressive
and well-specified

• Precise semantics

• Results are fully verified

ITP weaknesses:

• Formalization is slow

• It requires a high degree of
commitment and expertise

• It doesn’t promote
exploration and discovery



ITP + CAS

By linking the two, we can

• Allow exploration and computation in the proof assistant,
without reimplementing algorithms

• Lower the barrier for newcomers to ITP

• Loan a semantics/proof language to CAS

Many projects have attempted to connect the two: verified CAS
algorithms, trusting links, verified links, ephemeral links, CAS proof
languages.



Connecting Lean and Mathematica

• An extensible procedure to interpret Lean in Mathematica

• An extensible procedure to interpret Mathematica in Lean

• A link allowing Lean to evaluate arbitrary Mathematica
commands, and receive the results

• Tactics for certifying results of particular Mathematica
computations

• A link allowing Mathematica to execute Lean tactics and
receive the results



Connecting Lean and Mathematica

The idea: many declarations in Lean correspond roughly to
declarations in Mathematica.

We can do an approximate translation back and forth and verify
post hoc that the result is as expected.

Correspondences, translation rules, checking procedures are part of
a mathematical theory.



Link architecture

Lean expr
Lean expr in
MM syntax

Lean expr in
MM syntax

MM expr
MM expr in
Lean syntax

Lean expr

verification
tactics



Example: factoring polynomials

@[translation_rule]

meta def add_to_pexpr : app_trans_pexpr_keyed_rule :=

〈"Plus",
λ env args,

do args’ ← list.mfor args (pexpr_of_mmexpr env),

return $ pexpr_fold_op ‘‘‘(0) ‘‘‘(has_add.add) args’〉

meta def assert_factor (e : expr) (nm : name) : tactic unit :=

do fe ← factor e,

pf ← eq_by_simp e fe,

note nm pf

example (x : R) : 1 - 2*x + 3*x^2 - 2*x^3 + x^4 ≥ 0 :=

begin

assert_factor 1 - 2*x + 3*x^2 - 2*x^3 + x^4 using h,

rewrite h,

apply sq_nonneg

end



Example: sanity checking

Many computations in Mathematica are not easily certifiable, but
can still be useful in interactive proofs.

sanity_check runs the Mathematica command FindInstance to
search for an assignment satisfying the hypotheses and the
negation of the goal. The tactic fails if an assignment is found.

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0) :

x = 0 :=

by sanity_check; admit

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0)

(h3 : -pi < x ∧ x < pi) : x = 0 :=

by sanity_check; admit



Example: sanity checking

meta def sanity_check_aux (hs : list expr) (xs : list

expr) : tactic unit :=

do t ← target,

nt ← to_expr ‘‘‘(¬ %%t),

hs’’ ← monad.foldl (λ a b, to_expr ‘‘‘(%%a ∧ %%b))

‘(true) (nt::hs),

l ← run_command_on_list

(λ e,

"With[{ls=Map[Activate[LeanForm[#]]&,"++e++"]},

Length[FindInstance[ls[[1]], Drop[ls, 1]]]]")

(hs’’::xs),

n ← to_expr ‘‘‘(%%l : N) >>= eval_expr N,
if n > 0 then

fail "sanity check: the negation of the goal is

consistent with hypotheses"

else skip



Examples

We can use this technique for:

• factoring (numbers, polynomials, matrices)

• linear arithmetic

• computing integrals/antiderivatives

• numeric approximations

• unverified simplification

• guiding tactics

• ...



TOC

Introduction

Lean and metaprogramming

Linking Lean and Mathematica

Solving nonlinear inequalities



Nonlinear inequalities

0 < x < y , u < v

=⇒
2u + exp(1 + x + x4) < 2v + exp(1 + y + y4)

• This inference is not contained in linear arithmetic or real
closed fields.

• This inference is tight: symbolic or numeric approximations to
exp are not useful.

• Backchaining using monotonicity properties suggests many
equally plausible subgoals.

• But, the inference is completely straightforward.



A new method

We propose and implement a method based on this type of
heuristically guided forward reasoning. Our method:

• Verifies inequalities on which other procedures fail.

• Can produce fairly direct proof terms.

• Captures natural, human-like inferences.

• Performs well on real-life problems.

• Is not complete.

• Is not guaranteed to terminate.



Polya: modules and database

Any comparison between canonical terms can be expressed as
ti ./ 0 or ti ./ c · tj , where ./ ∈ {=, 6=, <,≤, >,≥}. This is in the
common language of addition and multiplication.

A central database (the blackboard) stores term definitions and
comparisons of this form.

Modules use this information to learn and assert new comparisons.

The procedure has succeeded in verifying an implication when
modules assert contradictory information.



Polya data types

meta structure blackboard : Type :=

(ineqs : hash_map (expr×expr) (λ p, ineq_info p.1 p.2))

(diseqs : hash_map (expr×expr) (λ p, diseq_info p.1 p.2))

(signs : hash_map expr sign_info)

(exprs : rb_set (expr × expr_form))

(contr : contrad)

(changed : bool := ff)



Polya: producing proof terms

Every piece of information asserted to the blackboard must be
tagged with a justification.

We define a datatype of justifications in Lean, and a metaprogram
that will convert a justification into a proof term.

meta inductive contrad

| none : contrad

| eq_diseq : Π {lhs rhs}, eq_data lhs rhs → diseq_data

lhs rhs → contrad

| ineqs : Π {lhs rhs}, ineq_info lhs rhs → ineq_data lhs

rhs → contrad

| sign : Π {e}, sign_data e → sign_data e → contrad

| strict_ineq_self : Π {e}, ineq_data e e → contrad

| sum_form : Π {sfc}, sum_form_proof sfc → contrad



Polya: computational structure

Blackboard
Stores definitions and

comparisons

Additive Module
Derives comparisons using

additive definitions

Multiplicative Module
Derives comparisons using

multiplicative definitions

Axiom Instantiation Module
Derives comparisons using universal

axioms

Exp/Log Module
Derives comparisons and

axioms involving exp and log

Min/Max
Module

Derives comparisons

involving min and

max

Congruence
Closure Module

Enforces proper

interpretation of

functions

Absolute Value
Module

Derives comparisons and

axioms involving abs

nth Root Module
Derives comparisons and axioms

about fractional exponents



Theory modules

Each module looks specifically at terms with a certain structure.
E.g. a trigonometric module looks only at applications of sin, cos,
etc.

Theory modules can be developed alongside the mathematical
theory. Intuition: “when I see a term of this shape, this is what I
immediately know about it, and why.”

Modules can interact with other computational processes, e.g.
Mathematica.



Conclusions

• Dependent type theory is a powerful language for formalizing
mathematics.

• It is also a powerful programming language.

• The line between these is blurry: mathematical reasoning
techniques are part of mathematics.

• We can create a more powerful proof assistant by combining
the two.

Thanks for listening!


	Introduction
	Lean and metaprogramming
	Linking Lean and Mathematica
	Solving nonlinear inequalities

