
An extensible ad hoc interface
between Lean and Mathematica

Robert Y. Lewis

Carnegie Mellon University

September 24, 2017



A bi-directional extensible ad hoc interface
between Lean and Mathematica

Robert Y. Lewis Minchao Wu

Carnegie Mellon University

September 24, 2017



Computers in mathematics

Computers are becoming more and more common as tools for
mathematicians.

I Typesetting, ArXiV, wikis, search tools

I Graphing, plotting, visualization tools for “experimental
mathematics”

I SAT/SMT solvers solving combinatorial problems

I Domain-specific computations: homotopy groups, geometric
hulls, (non)linear systems

I Computer algebra systems for symbolic and numeric
computation

I Interactive theorem provers for formal verification



Computer algebra systems

Strengths:

I They are easy and useful

I They provide instant gratification

I They support interactive use, exploration

I They are programmable and extensible

Weaknesses:

I The focus is on symbolic computation, rather than abstract
definitions and assertions

I They are not designed for reasoning or search

I The semantics is murky

I They are sometimes inconsistent



Interactive theorem provers

Strengths:

I Their languages are expressive and well-specified

I They come with a precise semantics

I Results are fully verified

Weaknesses:

I Formalization is slow and tedious

I It requires a high degree of commitment and experise

I It doesn’t promote exploration and discovery



ITP + CAS

By linking the two, we can

I Allow exploration and computation in the proof assistant,
without reimplementing algorithms

I Lower the barrier for newcomers to ITP

I Loan a semantics/proof language to CAS

Many projects have attempted to connect the two: verified CAS
algorithms, trusting links, verified links, ephemeral links, CAS proof
languages.



Contributions

I An extensible procedure to interpret Lean expressions in
Mathematica

I An extensible procedure to interpret Mathematica expressions
in Lean

I A link allowing Lean to evaluate arbitrary Mathematica
commands, and recieve the results

I Tactics for certifying results of particular Mathematica
computations

I A link allowing Mathematica to execute particular Lean
tactics and recieve the results



Broader picture

Proof assistants, with clear semantics, can serve as glue between
many different mathematical tools.



Outline

Introduction

Background: Lean and Mathematica

Linking Lean and Mathematica
Translating Lean to Mathematica
Translating Mathematica to Lean

Verifying results

Calling Lean from Mathematica (a preview)



Background: Lean

Lean is a new interactive theorem prover, developed principally by
Leonardo de Moura at Microsoft Research, Redmond.

Lean is open source, released under a permissive license, Apache
2.0.

Calculus of constructions with:

I Non-cumulative hierarchy of universes

I Impredicative Prop

I Quotient types and propositional extensionality

I Axiom of choice available

See http://leanprover.github.io, or Leonardo de Moura’s
talk at ITP.

http://leanprover.github.io


Lean as a Programming Language

Lean implements a fast bytecode evaluator:

I It uses a stack-based virtual machine.

I It erases type information and propositional information.

I It uses eager evaluation (and supports delayed evaluation with
thunks).

I You can use anything in the Lean library, as long as it is not
noncomputable.

I The machine substitutes native nats and ints (and uses GMP
for large ones).

I It substitutes a native representation of arrays.

I It has a profiler and a debugger.

I It is really fast.



Lean as a Programming Language

Definitions tagged with meta are “VM only,” and allow unchecked
recursive calls.

meta def f : N → N
| n := if n=1 then 1

else if n%2=0 then f (n/2)

else f (3*n + 1)

#eval (list.iota 1000).map f



Lean as a Programming Language

There are algebraic structures that provides an interface to
terminal and file I/O.

Lean’s built-in package manager is implemented entirely in Lean.



Metaprogramming in Lean

Question: How can one go about writing tactics and automation?

Various answers:

I Use the underlying implementation language (ML, OCaml,
C++, . . . ).

I Use a domain-specific tactic language (LTac, MTac, Eisbach,
. . . ).

I Use reflection (RTac).



Metaprogramming in Lean

Lean’s answer: go meta, and use Lean itself.

(MTac, Idris, and now Agda do the same, with variations.)

Advantages:

I Users don’t have to learn a new programming language.

I The entire library is available.

I Users can use the same infrastructure (debugger, profiler,
etc.).

I Users develop metaprograms in the same interactive
environment.

I Theories and supporting automation can be developed
side-by-side.



Metaprogramming in Lean

meta def find : expr → list expr → tactic expr

| e [] := failed

| e (h :: hs) :=

do t ← infer_type h,

(unify e t >> return h) <|> find e hs

meta def assumption : tactic unit :=

do { ctx ← local_context,

t ← target,

h ← find t ctx,

exact h }

<|> fail "assumption tactic failed"

lemma simple (p q : Prop) (h1 : p) (h2 : q) : q :=

by assumption



Background: Mathematica

Mathematica is a powerful and popular computer algebra system
developed at Wolfram Research, implementing the Wolfram
Language.

It provides a vast variety of functions for manipulating
mathematical expressions, as well as tools for manipulating and
displaying data.



Background: Mathematica

Some basic Mathematica syntax and terminology:

I Function application
I Plus[x, y]
I Plus[x, y, z]
I x + y + z
I Factor[xˆ2 - 2x + 1]
I xˆ2 - 2x + 1 // Factor

I In Plus[x, y], we refer to Plus as the head symbol and x,
y as the arguments

I Head symbols can be given computational behavior via pattern
matching rules: MyFunc[s String] := Reverse[s]



Outline

Introduction

Background: Lean and Mathematica

Linking Lean and Mathematica
Translating Lean to Mathematica
Translating Mathematica to Lean

Verifying results

Calling Lean from Mathematica (a preview)



Link architecture

We’ll focus on using Mathematica from within Lean.
We’ll need:

I A Lean-to-Mathematica reflection (in Lean)

I A Lean-to-Mathematica interpretation (in Mathematica)

I Computation functions (in Mathematica)

I A Mathematica-to-Lean reflection (in Lean)

I A Mathematica-to-Lean interpretation (in Lean)

I Verification functions (in Lean)



Lean expression grammar

meta inductive expr (elaborated : bool := tt)

| var {} : nat → expr

| sort {} : level → expr

| const {} : name → list level → expr

| mvar : name → expr → expr

| local_const : name → name → binder_info → expr → expr

| app : expr → expr → expr

| lam : name → binder_info → expr → expr → expr

| pi : name → binder_info → expr → expr → expr

| elet : name → expr → expr → expr → expr

| macro : macro_def → list expr → expr

meta def mathematica_form_of_level : level → string := . . .

meta def mathematica_form_of_name : name → string := . . .

meta def mathematica_form_of_expr : expr → string := . . .



Lean expression grammar

x : real ` sin x : real

app (const ‘sin [])

(local_const ‘x ‘x binder_info.default (const ‘real []))

Applying mathematica_form_of_expr produces:

App[Const[‘‘sin’’, LListNil],
LocalConst[‘‘x’’, ‘‘x’’, BID,

Const[‘‘real’’, LListNil]]]



Mathematica translation rules

The head symbols App, Const, etc. are uninterpreted in
Mathematica.

We want to exploit the facts that:
I certain Lean constants correspond to certain Mathematica

constants
I sin “means” the same as Sin

I certain expression patterns in Lean correspond to certain
expression patterns in Mathematica

I λx, t “means” the same as Function[x, t]



Mathematica translation rules

We define a Mathematica function LeanForm using pattern
matching rules:

LeanForm[App[App[App[App[
Const["add", _], _], _], x_], y_]] :=

Inactive[Plus][LeanForm[x],LeanForm[y]]

LeanForm[App[Const["list.nil", _], _]] :=
{}

LeanForm[App[App[App[
Const["list.cons", _], _], h_], t_]] :=

Join[{LeanForm[h]}, LeanForm[t]]



Mathematica translation rules

With the right set of LeanForm rules, we can reduce a Lean
expression to something semantically meaningful in Mathematica.

J2+3K // LeanForm evaluates to Inactive[Plus][2, 3]

In a local context with x : real,
Jx^2 - 2*x + 1K // LeanForm // Activate // Factor
evaluates to Power[Plus[-1,JxK], 2]



Mathematica expression grammar

inductive mmexpr

| sym : string → mmexpr

| str : string → mmexpr

| int : int → mmexpr

| real : float → mmexpr

| app : mmexpr → list mmexpr → mmexpr

Mathematica expressions are built out of atoms and applications of
expressions to lists of expressions.

Analogous to the representation of Lean expressions in
Mathematica, we can represent any Mathematica expression in
Lean with a term of type mmexpr.

It is easy to implement
parse_to_mmexpr : string → tactic mmexpr.



Lean interpretation rules

Mathematica expressions usually correspond to Lean
pre-expressions (unelaborated / input-level).
Plus[x, 1] is analogous to add x 1 which elaborates to
something longer.

(One exception: the Lean representation of the Mathematica
representation of a Lean expression corresponds to the original
Lean expression.)

The Lean types expr and pexpr share the same implementation.
to_expr : pexpr → tactic expr attempts to elaborate a pexpr.



Lean interpretation rules

We define pexpr_of_mmexpr : mmexpr → tactic pexpr

which tries to interpret a Mathematica expression into a Lean
pre-expression.

New interpretation rules can be declared in Lean:

@[app_to_pexpr_keyed]

meta def list_to_pexpr : app_to_pexpr_keyed_rule :=

〈"List",
λ ctx args,

do args’ ← args.mfor (pexpr_of_mmexpr ctx),

return $ args’.foldr (λ h t, ‘‘(%%h :: %%t)) ‘‘([])〉



Lean interpretation rules

Lean and Mathematica handle binders differently.

I Lean: λ and Π bind anonymous variables

I Mathematica: Function, Integral, many other head
symbols bind a specified symbol

The translation procedure must be aware of the local context.

@[app_to_pexpr_keyed]

meta def function_to_pexpr : app_to_pexpr_keyed_rule :=

〈"Function", λ ctx args, match args with

| [sym x, bd] :=

let v := mk_local_const x,

do bd’ ← pexpr_of_mmexpr (ctx.insert x v) bd,

return $ mk_lambda’ v bd’

| _ := failed

end〉



Lean interpretation rules

Three types of translation rules: symbol, keyed app, unkeyed app

@[sym_to_expr]

meta def true_to_pexpr : sym_to_expr_rule :=

〈"True", ‘(true)〉

@[app_to_pexpr_unkeyed]

meta def app_inactive_to_pexpr : app_to_pexpr_unkeyed_rule

| env (app (sym "Inactive") [t]) l :=

pexpr_of_mmexpr env (app t l)

| _ _ _ := failed



Communication protocol

So far, we have

I mathematica_form_of_expr : expr → string to represent a
Lean expression in Mathematica

I LeanForm to interpret a Lean expression in Mathematica

I The entire Mathematica library to compute with interpreted
expressions

I lean_form_of_mm_expr : string → tactic mmexpr to
represent a Mathematica expression in Lean

I pexpr_of_mmexpr : mmexpr → tactic pexpr to interpret a
Mathematica expression in Lean

To glue them together, we need
evaluate_in_mathematica : string → tactic string



Communication protocol

We implement a simple server in Mathematica. The server listens
for requests, evaluates the requests, and returns the result as a
string.

A corresponding Python client sends its argument to the server for
evaluation.

evaluate_in_mathematica : string → tactic string calls the
client using Lean’s IO monad, which provides a command-line
interface to external programs.



Communication protocol

So we can combine these functions into

meta def evaluate_command_on_expr

(cmd : string → string) (e : expr) : tactic pexpr :=

let e’ := mathematica_form_of_expr e in

do mm ← lean_form_of_mm_expr (cmd e’),

pexpr_of_mmexpr mm

More concretely, we could write

meta def factor (e : expr) : tactic expr :=

do tp ← infer_type e,

pe ← evaluate_command_on_expr

(λ s, s ++ "// LeanForm // Activate // Factor")

e,

to_expr ‘‘(%%pe : %%tp)



Outline

Introduction

Background: Lean and Mathematica

Linking Lean and Mathematica
Translating Lean to Mathematica
Translating Mathematica to Lean

Verifying results

Calling Lean from Mathematica (a preview)



Certification

There’s little reason to trust the output of Mathematica, and less
reason to trust this translation process.

For many computations, verifying that a result has some property
is easier than computing the result itself.
E.g. if p is a polynomial, it is easier to verify that
Factor[p] = p than to compute Factor[p].

We pair this translation procedure with a set of task-specific
verification procedures.



Example: factoring polynomials

meta def eq_by_simp (e1 e2 : expr) : tactic expr :=

{ do gl ← mk_app ‘eq [e1, e2],

mk_inhabitant_using gl ‘[simp]}

<|> fail "unable to simplify"

meta def assert_factor (e : expr) (nm : name) : tactic unit :=

do fe ← factor e,

pf ← eq_by_simp e fe,

note nm pf

example (x : R) : 1 - 2*x + 3*x^2 - 2*x^3 + x^4 ≥ 0 :=

begin

assert_factor 1 - 2*x + 3*x^2 - 2*x^3 + x^4 using h,

rewrite h,

apply sq_nonneg

end



Example: linear arithmetic

Motzkin transposition theorem

Let P,Q,R be matrices and p,q, r vectors.

I Px > p,Qx ≥ q,Rx = r has no solution x

if and only if
I PTy1 + QTy2 + Rty3 = 0 has a solution y1, y2, y3 with

y1, y2 ≥ 0 and either
I y1 · p + y2 · q + y3 · r < 0 or
I y1 · p + y2 · q + y3 · r ≤ 0 and y1 > 0.

This theorem gives a notion of certificate for linear arithmetic.



Example: linear arithmetic

We can use Mathematica to generate witnesses to the MTT and
apply them to produce fully checkable proofs.

example (a b c d e f g : Z)
(h1 : 1*a + 2*b + 3*c + 4*d + 5*e + 6*f + 7*g ≤ 30)

(h2 : (-1)*a ≤ 4)

(h3 : (-1)*b + (-2)*d ≤ -4)

(h4 : (-1)*c + (-2)*f ≤ -5)

(h5 : (-1)*e ≤ -3)

(h6 : (-1)*g ≤ -2) : false :=

by not_exists_of_linear_hyps h1 h2 h3 h4 h5 h6



Example: sanity checking

Many computations in Mathematica are not easily certifiable, but
can still be useful in interactive proofs.

sanity_check runs the Mathematica command FindInstance to
search for an assignment satisfying the hypotheses and the
negation of the goal. The tactic fails if an assignment is found.

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0) :

x = 0 :=

by sanity_check; admit

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0)

(h3 : -pi < x ∧ x < pi) : x = 0 :=

by sanity_check; admit



Example: Mathematica as an oracle

There is a spectrum of trust levels. Some users may be
comfortable using Mathematica as an oracle.

meta def full_simp (e : expr) : tactic (expr × expr) :=

do pe ← evaluate_command_on_expr

(λ t, t ++ "//LeanForm//Activate//FullSimplify")

e,

eqtp ← to_expr ‘‘(%%e = %%pe),

ax_name ← add_axiom eqtp,

proof ← mk_const ax_name,

return (val, proof)

example (x : R) :

x*BesselJ 2 x + x*BesselJ 0 x = 2*BesselJ 1 x :=

by prove_by_full_simp



Example: Mathematica as an oracle

We can also use Mathematica to obtain approximations of
constants and axiomatize these bounds:

example :=

begin

approx (100*BesselJ 2 0.52) (0.00001 : R),
trace_state

end

/-

approx : 12887461 / 3900000 < 100 * BesselJ 2 (13 / 25)

∧ 100 * BesselJ 2 (13 / 25) < 12887539 / 3900000

` true

-/



Outline

Introduction

Background: Lean and Mathematica

Linking Lean and Mathematica
Translating Lean to Mathematica
Translating Mathematica to Lean

Verifying results

Calling Lean from Mathematica (a preview)



Calling Lean from Mathematica
(A preview)

Mathematica has no built in notion of “proof” or “correctness.”
For some functions, it’s not even clear what the intended
semantics are.

We can consider a “proposition” to be true if applying
FullSimplify evaluates to True, but this is of limited scope,
and FullSimplify is a black box.

Idea: translate Mathematica “propositions” to Lean, where they
have semantics and a proof language.



Calling Lean from Mathematica
(A preview)

ProveUsingLeanTactic[p , tac ] takes

I an expression p

I a Lean tactic string tac

It translates p into a Lean expression p’, attempts to prove p’

using tac, and returns the resulting proof term.



Calling Lean from Mathematica
(A preview)

We can add rules to (try to) translate
the resulting proof.

DiagramOfFormula[
ForAll[{P, Q},

Implies[
Or[P, Q],
Not[And[Not[P], Not[Q]]]

]
]

]

Hyp: a

P ∨Q

Hyp: h

¬ P ∧ ¬Q

∧EL

¬ P

Hyp: h

¬ P ∧ ¬Q

∧ER

¬Q

∨E

False

⇒I [h]

¬ (¬ P ∧ ¬Q)

⇒I [a]

P ∨Q⇒ ¬ (¬ P ∧ ¬Q)



Calling Lean from Mathematica
(A preview)

We can try to:

I Verify the output of FullSimplify or other computations

I Discover missing side conditions

I Extract “interesting” parts of proofs

I “Type-check” or “elaborate” certain Mathematica expressions

I Explore the Lean library


	Introduction
	Background: Lean and Mathematica
	Linking Lean and Mathematica
	Translating Lean to Mathematica
	Translating Mathematica to Lean

	Verifying results
	Calling Lean from Mathematica (a preview)

