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bfseries Motivation



Lean Forward

A new project at the VU: formalize modern results in number theory, in Lean.

Develop comprehensive libraries that will help with many results.
Target “research areas”/collections of moderate di�iculty results, instead of single
challenge theorems.
Work on the system and automation alongside the formalizing.
PI: Jasmin Blanchette
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Formalizing number theory

Number theory starts as “the study ofZ” but quickly goes beyond this.

We need libraries for:
computations onN,Z,Q,R: divisibility, modularity, factoring, arithmetic,
inequalities, . . .
less familiar “number” structures, such as number fields, the p-adic numbers, . . .
univariate andmultivatiate polynomials, and related algebra and geometry
special functions: Dirichlet series, modular forms, . . .
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The p-adic numbers

The p-adic numbersQp and p-adic integersZp
are fundamental objects of study in number theory
have applications in theory, numerics, CS

I Diophantine equations
I E�icient representations of rationals
I FP approximations

are obtained analogously toR, but have very di�erent properties
I CompleteQwith respect to the p-adic norm
I Unordered, nonarchimedean norm, Hensel’s lemma
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Contributions

We have
defined the p-adic valuation and norm onQ
generalized the mathlib construction ofR, using it to defineQp

developed the basic theory ofQp and Zp
proved Hensel’s lemma overZp

in Lean.
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bfseries The Lean theorem prover



Background: Lean

Lean is a new interactive theorem prover, developed principally by Leonardo de Moura at
Microso� Research, Redmond.

Calculus of Inductive Constructions with:
Non-cumulative hierarchy of universes
Impredicative Prop
Quotient types and propositional extensionality
Axiom of choice available

See http://leanprover.github.io
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Background: mathlib

Lean’s mathematics library, mathlib, is maintained by Mario Carneiro and Johannes Hölzl,
with many contributors.

Classical mathematics
∼120k loc
Developments in algebra, topology, analysis, set theory, category theory, . . .

This talk made possible by earlier contributions!

See https://github.com/leanprover/mathlib
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bfseries Completions



The rational numbers

The rational numbersQ are incomplete.

The sequence of rationals

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, . . .

does not converge to a rational.
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CompletingQ

Definition.
A sequence s : N→ Q is Cauchy if for every positive ε ∈ Q, there exists a number N such
that for all k ≥ N, |sN − sk| < ε.

Intuition: a sequence is Cauchy if its entries eventually become arbitrarily close.

Definition.
Two sequences s and t are equivalent, written s ∼ t, if for every positive ε ∈ Q, there exists
an N such that for all k ≥ N, |sk − tk| < ε.

Intuition: two sequences are equivalent if they eventually become arbitrarily close to each other.
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The real numbers

Claim.
The relation∼ is an equivalence relation.

Definition.
The set of real numbersR is the quotient of the set of rational Cauchy sequences, with
respect to∼. We call this the completion ofQ.

Claim.
If r1 ∼ r2 and s1 ∼ s2 then r1 + s1 ∼ r2 + s2. Thus addition li�s fromQ toR. The other ring
(field) operations follow similarly.
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In the construction ofR, what was hardcoded?
What can we abstract?



General completions

We can generalize the measure of distance and the base type.

Definition.
A sequence s : N→ Q is Cauchy if for every positive ε ∈ Q, there exists a number N such
that for all k ≥ N, |sN − sk| < ε.
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General completions

We can generalize the measure of distance and the base type.

Definition.
Let Q be a ring. A sequence s : N→ Q is Cauchy with respect to an absolute value abs if for
every positive ε ∈ Q, there exists a number N such that for all k ≥ N, abs(sN − sk) < ε.

Definition.
Let F be an ordered field. A function abs : Q→ F is a (generic) absolute value if it is

positive-definite: abs(0) = 0 and abs(k) > 0 otherwise
subadditive: abs(x + y) ≤ abs(x) + abs(y)
multiplicative: abs(x · y) = abs(x) · abs(y)
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General completions

class is_absolute_value {α} [ordered_field α] {β} [ring β] (f : β → α) : Prop :=
(abv_nonneg : ∀ x, 0 ≤ f x)
(abv_eq_zero : ∀ {x}, f x = 0 ↔ x = 0)
(abv_add : ∀ x y, f (x + y) ≤ f x + f y)
(abv_mul : ∀ x y, f (x * y) = f x * f y)

parameters {α : Type} [comm_ring α] {β : Type} [ordered_field β]
(abv : α → β) [is_absolute_value abv]

def is_cauchy (f : N → β) : Prop := ∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j - f i) < ε

def cau_seq : Type := {f : N → α // is_cauchy abv f}

def equiv (f g : cau_seq) : Prop := ∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j - g j) < ε

def completion : Type := quotient cau_seq equiv

instance : comm_ring completion := . . .
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Why this completion?

This can be done in various settings. Why this one?

Doesn’t depend onR (vs. metric completion, normed completion)
Lightweight, computable (vs. uniform completion, ring completion)
Easy to li� field operations (vs. uniform completion)
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R andmore

We easily prove is_absolute_value (abs : Q → Q) and defineR.

A di�erent choice of absolute value leads us toQp.
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bfseries The p-adic norm



The p-adic valuation

Fix a natural number p > 1.

Definition.
The p-adic valuation νp : Z→ N is defined by

νp(z) = max
{
n ∈ N

∣∣ pn | z}
with νp(0) = 0.

This extends to νp : Q→ Z by setting

νp(q/r) = νp(q)− νp(r)

when q and r are coprime.
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The p-adic valuation

Definition.

def padic_val (p : N) (n : Z) : N :=
if hn : n = 0 then 0
else if hp : p > 1 then nat.find_greatest (λ k, (p ^ k) | n) n.nat_abs
else 0

def padic_val_rat (p : N) (q : Q) : Z :=
(padic_val p q.num : Z) - (padic_val p q.denom : Z)
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The p-adic norm

νp(z) = max
{
n ∈ N

∣∣ pn | z} νp(q/r) = νp(q)− νp(r)

Definition.
The p-adic norm | · |p : Q→ Q is defined by

|x|p =

{
0 x = 0
1

pνp(x)
x 6= 0
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The p-adic norm

Definition.

def padic_norm (p : N) (q : Q) : Q :=
if q = 0 then 0 else (p : Q) ^ (-(padic_val_rat p q))
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The p-adic norm

When p is prime, the p-adic norm is an absolute value onQ.

instance {p} [prime p] : is_absolute_value (padic_norm p)

It is also nonarchimedean:

protected theorem nonarchimedean {p} [prime p] (q r : Q) :
padic_norm p (q + r) ≤ max (padic_norm p q) (padic_norm p r)
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bfseries The p-adic numbers



The p-adic norm

We can completeQwith respect to | · |p. The result: the p-adic numbersQp.

def padic (p : N) [nat.prime p] := cau_seq.completion (padic_norm p)

notation `Q_[` p `]` := padic p
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The p-adic numbers

A real number in base 10 is

±
k∑

i=−∞
ai · 10i

where k is a (possibly negative) integer and each ai ∈ {0, 1, . . . , 9}.

A p-adic number in base p is
∞∑
i=k

ai · pi

where k is a (possibly negative) integer and each ai ∈ {0, 1, . . . , p− 1}.
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Properties of the p-adics

The p-adic norm onQ li�s toQp.
I Reason: for any Cauchy sequence s : N→ Q, |si|p is eventually constant.

In Lean, we instantiateQ_[p] as a normed field.
I It inherits a topology from the norm.

The norm is nonarchimedean.

As a consequence, if |x|p ≤ 1 and |yp| ≤ 1, then |x + y|p ≤ 1.
I Thus the p-adic integersZp :=

{
z ∈ Qp

∣∣ |z|p ≤ 1} form a ring.
I Defined in Lean as a subtype:

def padic_int (p : N) [p.prime] := {x : Q_[p] // ‖x‖ ≤ 1}

Zp is a normed commutative local ring.

Qp and Zp are complete with respect to | · |p.
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Formalization notes

∼1500 loc for all this, a�er the completion process
Loosely follows Gouvêa, p-adic Numbers (1993).
Uses linarith, ring, wlog, a custom tactic for simplifying sequence indices
Heavy use of type classes
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bfseries Hensel’s lemma



Hensel’s lemma

Gouvêa: “most important algebraic property of the p-adic numbers.”

Let Zp[X] denote the set of polynomials with coe�icients inZp.

Theorem.
Suppose that f(X) ∈ Zp[X] and a ∈ Zp satisfy |f(a)|p < |f ′(a)|2p. There exists a unique
z ∈ Zp such that f(z) = 0 and |z − a|p < |f ′(a)|p.

Theorem.
theorem hensels_lemma {p : N} [hp : prime p] {a : Z_[p]} {F : polynomial Z_[p]} :
‖F.eval a‖ < ‖F.derivative.eval a‖^2 →
∃ z : Z_[p], F.eval z = 0 ∧ ‖z - a‖ < ‖F.derivative.eval a‖ ∧
∀ z' : Z_[p], F.eval z' = 0 → ‖z' - a‖ < ‖F.derivative.eval a‖ → z' = z
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Hensel’s lemma

Theorem.
Suppose that f(X) ∈ Zp[X] and a ∈ Zp satisfy |f(a)|p < |f ′(a)|2p. There exists a unique
z ∈ Zp such that f(z) = 0 and |z − a|p < |f ′(a)|p.

The proof: Newton’s method. Follows a writeup by Keith Conrad.

Define a recursive sequenceN→ Zp satisfying certain properties.
Show this sequence is Cauchy.
Show the limit is a root of f .
Show this root is unique within a neighborhood of a.
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The Newton sequence

Informally, we write:

a0 = a

an+1 = an −
f(an)
f ′(an)

It is nontrivial to show that these values lie inZp.

But casts in Lean are annoying.
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The Newton sequence

def T : R := ‖(F.eval a).val / ((F.derivative.eval a).val)^2‖

def ih (n : N) (z : Z_[p]) : Prop :=
‖F.derivative.eval z‖ = ‖F.derivative.eval a‖ ∧
‖F.eval z‖ ≤ ‖F.derivative.eval a‖^2 * T ^ (2^n)

def newton_seq : Π n : N, {z : Z_[p] // ih n z}
| 0 := 〈a, ih_0〉
| (k+1) := ih_n (newton_seq k).2
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The Newton sequence

A large part of the proof is spent verifying the successor step.
algebraic manipulations
chains of (simple) nonlinear inequalities

def ih (n : N) (z : Z_[p]) : Prop :=
‖F.derivative.eval z‖ = ‖F.derivative.eval a‖ ∧
‖F.eval z‖ ≤ ‖F.derivative.eval a‖^2 * T ^ (2^n)

def ih_n {n : N} {z : Z_[p]} (hz : ih n z) :
{z' : Z_[p] // ih (n+1) z'} := . . .
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The Newton sequence is Cauchy

We then establish that this sequence is Cauchy.

Limit arguments: some work to reconcile sequential limits and filter limits.
More chains of inequalities and algebraic identities.

I nonarchimedean property of the norm
I ∀x∀y∃k.f(x + y) = f(x) + f ′(x) · y + k · y2
I ∀x∀y∀n∃k.(x + y)n = xn + n · xn−1 · y + k · y2

Interesting note: the argument given by Conrad fails when the initial point a is already a
solution.
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The limit is a unique root

It follows from the induction hypothesis that the limit of the Newton sequence is a root of f .

Only slightly more work to show it is unique.

Special case when f(a) = 0 is immediate (the sequence is constant).
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Conclusions

Formalization notes:
∼400 loc, corresponding to∼65 informal lines.
This could be greatly shortened with better automation for inequalities and casts.

Future work:
Generalize! (Characterize “henselian rings.”)
Extend!
More number theory!

Related work:
Constructions ofQp in HOL Light (Harrison) and UniMath (Pelayo, Voevodsky, Warren).
A variant of Hensel’s lemma overZ in Coq (Martin-Dorel, Hanrot, Mayero, Théry).

31 32



References

Keith Conrad.
Hensel’s lemma.
http://www.math.uconn.edu/ kconrad/blurbs/gradnumthy/hensel.pdf.

Fernando Q. Gouvêa.
p-adic Numbers.
Universitext. Springer, Berlin, second edition, 1997.

32 / 32



Appendix



The p-adic norm

Examples.
x ν3(x) |x|3
1 0 1
3 1 1

3
6 1 1

3
18 2 1

9
1
3 -1 3

118098 10 1
59049

118099 0 1



The p-adic numbers

Arithmetic inQ5

. . .
1

4
1

4
1

4
1

4
1

4
1

4
1

44

+ 1

0

. . .
1

3
2

1
1

3
2

1
1

3
2

1
1

32

× 3

1

. . .
1

3
1

1
1

3
1

1
1

3
1

1
1

32

+ . . . 44444444
. . . 31313131



The p-adic numbers
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