A Formal Proof of Hensel's Lemma over the *p*-adic Integers

Robert Y. Lewis

Vrije Universiteit Amsterdam

CPP 2019 January 14

Motivation

A new project at the VU: formalize modern results in number theory, in Lean.

- Develop comprehensive libraries that will help with many results.
- Target "research areas"/collections of moderate difficulty results, instead of single challenge theorems.
- Work on the system and automation alongside the formalizing.
- PI: Jasmin Blanchette

Lean Forward

Number theory starts as "the study of \mathbb{Z} " but quickly goes beyond this.

We need libraries for:

- computations on N, Z, Q, R: divisibility, modularity, factoring, arithmetic, inequalities, ...
- less familiar "number" structures, such as number fields, the *p*-adic numbers, ...
- univariate and multivatiate polynomials, and related algebra and geometry
- special functions: Dirichlet series, modular forms, ...

The *p*-adic numbers \mathbb{Q}_p and *p*-adic integers \mathbb{Z}_p

- are fundamental objects of study in number theory
- have applications in theory, numerics, CS
 - Diophantine equations
 - Efficient representations of rationals
 - FP approximations
- \blacksquare are obtained analogously to $\mathbb R,$ but have very different properties
 - ► Complete Q with respect to the *p*-adic norm
 - Unordered, nonarchimedean norm, Hensel's lemma

We have

- defined the *p*-adic valuation and norm on Q
- generalized the mathlib construction of \mathbb{R} , using it to define \mathbb{Q}_p
- developed the basic theory of \mathbb{Q}_p and \mathbb{Z}_p
- **proved Hensel's lemma over** \mathbb{Z}_p

in Lean.

Table of contents

1 Motivation

- 2 The Lean theorem prover
- 3 Completions
- 4 The p-adic norm
- 5 The p-adic numbers

6 Hensel's lemma

The Lean theorem prover

Lean is a new interactive theorem prover, developed principally by Leonardo de Moura at Microsoft Research, Redmond.

Calculus of Inductive Constructions with:

- Non-cumulative hierarchy of universes
- Impredicative Prop
- Quotient types and propositional extensionality
- Axiom of choice available

See http://leanprover.github.io

Lean is a new interactive theorem prover, developed principally by Leonardo de Moura at Microsoft Research, Redmond.

Calculus of Inductive Constructions with:

- Non-cumulative hierarchy of universes
- Impredicative Prop
- Quotient types and propositional extensionality
- Axiom of choice available

See http://leanprover.github.io

Lean's mathematics library, mathlib, is maintained by Mario Carneiro and Johannes Hölzl, with many contributors.

- Classical mathematics
- ~120k loc
- Developments in algebra, topology, analysis, set theory, category theory, . . .

This talk made possible by earlier contributions!

See https://github.com/leanprover/mathlib

Completions

The rational numbers \mathbb{Q} are incomplete.

The sequence of rationals

```
1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, \ldots
```

does not converge to a rational.

A sequence $s : \mathbb{N} \to \mathbb{Q}$ is Cauchy if for every positive $\epsilon \in \mathbb{Q}$, there exists a number N such that for all $k \ge N$, $|s_N - s_k| < \epsilon$.

Intuition: a sequence is Cauchy if its entries eventually become arbitrarily close.

Definition.

Two sequences *s* and *t* are equivalent, written $s \sim t$, if for every positive $\epsilon \in \mathbb{Q}$, there exists an *N* such that for all $k \geq N$, $|s_k - t_k| < \epsilon$.

Intuition: two sequences are equivalent if they eventually become arbitrarily close to each other.

Claim.

The relation \sim is an equivalence relation.

Definition.

The set of real numbers \mathbb{R} is the quotient of the set of rational Cauchy sequences, with respect to \sim . We call this the completion of \mathbb{Q} .

Claim.

If $r_1 \sim r_2$ and $s_1 \sim s_2$ then $r_1 + s_1 \sim r_2 + s_2$. Thus addition lifts from \mathbb{Q} to \mathbb{R} . The other ring (field) operations follow similarly.

In the construction of \mathbb{R} , what was hardcoded? What can we abstract?

We can generalize the measure of distance and the base type.

Definition.

A sequence $s : \mathbb{N} \to \mathbb{Q}$ is Cauchy if for every positive $\epsilon \in \mathbb{Q}$, there exists a number N such that for all $k \ge N$, $|s_N - s_k| < \epsilon$.

We can generalize the measure of distance and the base type.

Definition.

Let *Q* be a ring. A sequence $s : \mathbb{N} \to Q$ is Cauchy with respect to an absolute value abs if for every positive $\epsilon \in Q$, there exists a number *N* such that for all $k \ge N$, $abs(s_N - s_k) < \epsilon$.

Definition.

Let F be an ordered field. A function abs : $Q \rightarrow F$ is a (generic) absolute value if it is

- positive-definite: abs(0) = 0 and abs(k) > 0 otherwise
- subadditive: $abs(x + y) \le abs(x) + abs(y)$
- multiplicative: $abs(x \cdot y) = abs(x) \cdot abs(y)$

General completions

class is_absolute_value { α } [ordered_field α] { β } [ring β] (f : $\beta \rightarrow \alpha$) : Prop := (abv nonneg : \forall x, 0 < f x) (abv eq zero : $\forall \{x\}, f x = 0 \leftrightarrow x = 0$) $(abv_add : \forall x y, f (x + y) < f x + f y)$ $(abv_mul : \forall x y, f (x * y) = f x * f y)$ **parameters** { α : Type} [comm_ring α] { β : Type} [ordered_field β] (abv : $\alpha \rightarrow \beta$) [is_absolute_value abv] def is_cauchy (f : $\mathbb{N} \to \beta$) : Prop := $\forall \varepsilon > 0, \exists i, \forall j \ge i, abv$ (f j - f i) < ε def cau seg : Type := {f : $\mathbb{N} \to \alpha //$ is cauchy aby f} def equiv (f g : cau_seq) : Prop := $\forall \varepsilon > 0, \exists i, \forall j \ge i, abv$ (f j - g j) < ε def completion : Type := quotient cau_seq equiv instance : comm_ring completion := ...

This can be done in various settings. Why this one?

- Doesn't depend on \mathbb{R} (vs. metric completion, normed completion)
- Lightweight, computable (vs. uniform completion, ring completion)
- Easy to lift field operations (vs. uniform completion)

We easily prove is_absolute_value (abs : $\mathbb{Q} \to \mathbb{Q}$) and define \mathbb{R} .

A different choice of absolute value leads us to \mathbb{Q}_p .

The p-adic norm

Fix a natural number p > 1.

Definition.

The *p*-adic valuation $\nu_p : \mathbb{Z} \to \mathbb{N}$ is defined by

 $\nu_p(z) = \max\left\{n \in \mathbb{N} \mid p^n \mid z\right\}$

with $\nu_p(0) = 0$.

This extends to $\nu_p : \mathbb{Q} \to \mathbb{Z}$ by setting

 $\nu_p(q/r) = \nu_p(q) - \nu_p(r)$

when q and r are coprime.

```
def padic_val (p : \mathbb{N}) (n : \mathbb{Z}) : \mathbb{N} :=
if hn : n = 0 then 0
else if hp : p > 1 then nat.find_greatest (\lambda k, (p ^ k) | n) n.nat_abs
else 0
```

def padic_val_rat (p : \mathbb{N}) (q : \mathbb{Q}) : \mathbb{Z} := (padic_val p q.num : \mathbb{Z}) - (padic_val p q.denom : \mathbb{Z})

$$\nu_p(z) = \max\left\{n \in \mathbb{N} \mid p^n \mid z\right\}$$

$$\nu_p(q/r) = \nu_p(q) - \nu_p(r)$$

The *p*-adic norm $|\cdot|_p : \mathbb{Q} \to \mathbb{Q}$ is defined by

$$|x|_{p} = egin{cases} 0 & x = 0 \ rac{1}{p^{
u_{p}(x)}} & x
eq 0 \end{cases}$$

def padic_norm (p : \mathbb{N}) (q : \mathbb{Q}) : \mathbb{Q} := if q = 0 then 0 else (p : \mathbb{Q}) ^ (-(padic_val_rat p q)) When p is prime, the p-adic norm is an absolute value on \mathbb{Q} .

instance {p} [prime p] : is_absolute_value (padic_norm p)

It is also nonarchimedean:

protected theorem nonarchimedean {p} [prime p] (q r : \mathbb{Q}) : padic_norm p (q + r) \leq max (padic_norm p q) (padic_norm p r)

The p-adic numbers

We can complete \mathbb{Q} with respect to $|\cdot|_p$. The result: the *p*-adic numbers \mathbb{Q}_p .

def padic (p : \mathbb{N}) [nat.prime p] := cau_seq.completion (padic_norm p) notation ' $\mathbb{Q}_{[' p ']'}$:= padic p

A real number in base 10 is

$$\pm \sum_{i=-\infty}^{k} a_i \cdot 10^i$$

where *k* is a (possibly negative) integer and each $a_i \in \{0, 1, \dots, 9\}$.

A *p*-adic number in base *p* is

$$\sum_{i=k}^{\infty} a_i \cdot p^i$$

where k is a (possibly negative) integer and each $a_i \in \{0, 1, \dots, p-1\}$.

Properties of the *p*-adics

- The *p*-adic norm on \mathbb{Q} lifts to \mathbb{Q}_p .
 - ▶ Reason: for any Cauchy sequence $s : \mathbb{N} \to \mathbb{Q}$, $|s_i|_p$ is eventually constant.
- In Lean, we instantiate Q_[p] as a normed field.
 - It inherits a topology from the norm.
- The norm is nonarchimedean.
- As a consequence, if $|x|_p \le 1$ and $|y_p| \le 1$, then $|x + y|_p \le 1$.
 - ▶ Thus the *p*-adic integers $\mathbb{Z}_p := \{z \in \mathbb{Q}_p \mid |z|_p \leq 1\}$ form a ring.
 - ▶ Defined in Lean as a subtype: def padic_int (p : N) [p.prime] := {x : Q_[p] // ||x|| ≤ 1}
- **\blacksquare** \mathbb{Z}_p is a normed commutative local ring.
- **\square** \mathbb{Q}_p and \mathbb{Z}_p are complete with respect to $|\cdot|_p$.

- \blacksquare ~1500 loc for all this, after the completion process
- Loosely follows Gouvêa, *p-adic Numbers* (1993).
- Uses linarith, ring, wlog, a custom tactic for simplifying sequence indices
- Heavy use of type classes

Hensel's lemma

Gouvêa: "most important algebraic property of the *p*-adic numbers."

Let $\mathbb{Z}_p[X]$ denote the set of polynomials with coefficients in \mathbb{Z}_p .

Theorem.

Suppose that $f(X) \in \mathbb{Z}_p[X]$ and $a \in \mathbb{Z}_p$ satisfy $|f(a)|_p < |f'(a)|_p^2$. There exists a unique $z \in \mathbb{Z}_p$ such that f(z) = 0 and $|z - a|_p < |f'(a)|_p$.

Theorem.

theorem hensels_lemma {p : \mathbb{N} } [hp : prime p] {a : \mathbb{Z}_{p} } {F : polynomial \mathbb{Z}_{p} : $\|F.eval a\| < \|F.derivative.eval a\|^2 \rightarrow$ $\exists z : \mathbb{Z}_{p}$, F.eval $z = 0 \land \|z - a\| < \|F.derivative.eval a\| \land$ $\forall z' : \mathbb{Z}_{p}$, F.eval $z' = 0 \rightarrow \|z' - a\| < \|F.derivative.eval a\| \rightarrow z' = z$

Theorem.

Suppose that $f(X) \in \mathbb{Z}_p[X]$ and $a \in \mathbb{Z}_p$ satisfy $|f(a)|_p < |f'(a)|_p^2$. There exists a unique $z \in \mathbb{Z}_p$ such that f(z) = 0 and $|z - a|_p < |f'(a)|_p$.

The proof: Newton's method. Follows a writeup by Keith Conrad.

- Define a recursive sequence $\mathbb{N} \to \mathbb{Z}_p$ satisfying certain properties.
- Show this sequence is Cauchy.
- Show the limit is a root of *f*.
- Show this root is unique within a neighborhood of *a*.

Informally, we write:

$$a_0 = a$$
$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$$

It is nontrivial to show that these values lie in \mathbb{Z}_p .

But casts in Lean are annoying.

```
def T : \mathbb{R} := \|(F.eval a).val / ((F.derivative.eval a).val)^2\|
```

A large part of the proof is spent verifying the successor step.

- algebraic manipulations
- chains of (simple) nonlinear inequalities

```
def ih (n : \mathbb{N}) (z : \mathbb{Z}_{[p]}) : Prop :=
||F.derivative.eval z|| = ||F.derivative.eval a|| \land
||F.eval z|| \leq ||F.derivative.eval a||^2 * T ^ (2^n)
```

```
def ih_n {n : \mathbb{N}} {z : \mathbb{Z}_{p}} (hz : ih n z) :
{z' : \mathbb{Z}_{p}// ih (n+1) z'} := ...
```

We then establish that this sequence is Cauchy.

- Limit arguments: some work to reconcile sequential limits and filter limits.
- More chains of inequalities and algebraic identities.
 - nonarchimedean property of the norm
 - $\forall x \forall y \exists k.f(x+y) = f(x) + f'(x) \cdot y + k \cdot y^2$
 - $\forall x \forall y \forall n \exists k. (x+y)^n = x^n + n \cdot x^{n-1} \cdot y + k \cdot y^2$

Interesting note: the argument given by Conrad fails when the initial point *a* is already a solution.

It follows from the induction hypothesis that the limit of the Newton sequence is a root of f.

Only slightly more work to show it is unique.

Special case when f(a) = 0 is immediate (the sequence is constant).

Conclusions

Formalization notes:

- ~400 loc, corresponding to ~65 informal lines.
- This could be greatly shortened with better automation for inequalities and casts.

Future work:

- Generalize! (Characterize "henselian rings.")
- Extend!
- More number theory!

Related work:

- Constructions of \mathbb{Q}_p in HOL Light (Harrison) and UniMath (Pelayo, Voevodsky, Warren).
- A variant of Hensel's lemma over Z in Coq (Martin-Dorel, Hanrot, Mayero, Théry).

31

Keith Conrad. Hensel's lemma.

http://www.math.uconn.edu/ kconrad/blurbs/gradnumthy/hensel.pdf.

Fernando Q. Gouvêa. *p-adic Numbers.* Universitext. Springer, Berlin, second edition, 1997.

Appendix

Examples.

Х	$\nu_3(x)$	<i>X</i> 3
1	0	1
3	1	$\frac{1}{3}$
6	1	$\frac{1}{3}$
18	2	$\frac{1}{9}$
$\frac{1}{3}$	-1	3
118098	10	$\frac{1}{59049}$
118099	0	1

Arithmetic in \mathbb{Q}_5

1 : 44	$\begin{smallmatrix}1&1&1&1&1\\4&4&4&4&4&4\\4&4&4&4&4&4\\4&4&4&4&$	12 31	12121 313132	1111111 31313132
+	1	×	3	$+ \ldots 44444444$
	0		1	31313131

The *p*-adic numbers

