Formalizing a sophisticated definition

Patrick Massot (Orsay)

joint work with

KEVIN BUZZARD (IC London) and JOHAN COMMELIN (Freiburg)

Formal Methods in Mathematics – Lean Together January 7th 2020

Extending functions

Theorem

Let $A \subset \mathbb{R}^p$ be a dense subset. Every uniformly continuous function $f \colon A \to \mathbb{R}^q$ extends to a (uniformly) continuous function $\bar{f} \colon \mathbb{R}^p \to \mathbb{R}^q$.

Extending functions

Theorem

Let $A \subset \mathbb{R}^p$ be a dense subset. Every uniformly continuous function $f \colon A \to \mathbb{R}^q$ extends to a (uniformly) continuous function $\bar{f} \colon \mathbb{R}^p \to \mathbb{R}^q$.

For every $x\in\mathbb{R}^p$, choose a sequence $a:\mathbb{N}\to A$ converging to x. Uniform continuity of f ensures $f\circ a$ is Cauchy, completeness of \mathbb{R}^q gives a limit y. Set $\bar{f}(x)=y.$ Then prove continuity of $\bar{f}.$

 $\mathsf{Example} \colon \, (+) : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \subset \mathbb{R} \text{ extends to } (+) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}.$

Extending functions

Theorem

Let $A \subset \mathbb{R}^p$ be a dense subset. Every uniformly continuous function $f \colon A \to \mathbb{R}^q$ extends to a (uniformly) continuous function $\bar{f} \colon \mathbb{R}^p \to \mathbb{R}^q$.

For every $x \in \mathbb{R}^p$, choose a sequence $a: \mathbb{N} \to A$ converging to x. Uniform continuity of f ensures $f \circ a$ is Cauchy, completeness of \mathbb{R}^q gives a limit y. Set $\bar{f}(x) = y$. Then prove continuity of \bar{f} .

Example: $(+): \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \subset \mathbb{R}$ extends to $(+): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

But multiplication or inversion are *not* uniformly continuous.

Theorem

 $A\subset\mathbb{R}^p$ dense subset. If $f:A o\mathbb{R}^q$ is continuous and

$$\forall x \in \mathbb{R}^p, \exists y \in \mathbb{R}^q, \forall u : \mathbb{N} \to A, u_n \longrightarrow x \Rightarrow f(u_n) \longrightarrow y$$

then f extends to a continuous function $\bar{f} \colon \mathbb{R}^p \to \mathbb{R}^q$.

This applies to multiplication $\mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$.

A better framework?

In order to handle inversion $\mathbb{Q}^* \to \mathbb{R}^*$ and more general spaces, we want a version where \mathbb{R}^p and \mathbb{R}^q are replaced by general topological spaces X and Y.

A better framework?

In order to handle inversion $\mathbb{Q}^* \to \mathbb{R}^*$ and more general spaces, we want a version where \mathbb{R}^p and \mathbb{R}^q are replaced by general topological spaces X and Y.

We can still say that f(x) converges to y when x tends to x_0 while remaining in A:

$$\forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \forall a \in A \cap V, f(a) \in W.$$

A better framework?

In order to handle inversion $\mathbb{Q}^* \to \mathbb{R}^*$ and more general spaces, we want a version where \mathbb{R}^p and \mathbb{R}^q are replaced by general topological spaces X and Y.

We can still say that f(x) converges to y when x tends to x_0 while remaining in A:

$$\forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \forall a \in A \cap V, f(a) \in W.$$

Theorem

Let X be a topological space, A a dense subset of X, and $f:A\to Y$ a continuous mapping of A into a regular space Y. If, for each $x_0\in X$, f(x) tends to a limit in Y when x tends to x_0 while remaining in A then f extends to a continuous map $\bar{f}:X\to Y$

Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$?

Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$? Hint: $\mathbb{Q} \not\subset \mathbb{R}$.

Does this theorem really applies to $\mathbb{Q}\times\mathbb{Q}\subset\mathbb{R}\times\mathbb{R}?$

 $\mathsf{Hint}\colon \, \mathbb{Q} \not\subset \mathbb{R}.$

Better framework:

Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$? Hint: $\mathbb{Q} \not\subset \mathbb{R}$.

Better framework:

$$\begin{array}{c}
A \xrightarrow{f} Y \\
\downarrow \downarrow & \exists ?\bar{f} \\
X
\end{array}$$

Issue: will we need discussions of

Side issue: how to formally refer to f?

extend f i de h where de is a proof that i is a dense topological embedding, and h is a proof that f admits a limit...?

Side issue: how to formally refer to f?

extend f i de h where de is a proof that i is a dense topological embedding, and h is a proof that f admits a limit...?

This looks clunky. Note that i and f can be inferred from the types of de and h. Should we use extend de h?

Side issue: how to formally refer to f?

extend f i de h where de is a proof that i is a dense topological embedding, and h is a proof that f admits a limit...?

This looks clunky. Note that i and f can be inferred from the types of de and h. Should we use extend de h?

A better solution is to define an extension operator E_i by:

$$E_i(f)(x) = \begin{cases} \text{some } y \text{ such that } f(a) \text{ tends to } y \text{ when } a \text{ tends to } x \\ \text{some junk value if no such } y \text{ exists} \end{cases}$$

Density of image of i is used only to ensure Y is non-empty! Then use de.extend ${\bf f}$

Separation issues

We want to generalize the story going from $\mathbb Q$ to $\mathbb R$, starting with a general topological ring R (not necessarily metric, or even separated).

Separation issues

We want to generalize the story going from $\mathbb Q$ to $\mathbb R$, starting with a general topological ring R (not necessarily metric, or even separated).

There is a notion of completeness of a topological ring. One can build some \widehat{R} which is a (minimal) complete separated space and a natural map $i:R\to \widehat{R}$. We want to extend addition and multiplication.

Separation issues

We want to generalize the story going from $\mathbb Q$ to $\mathbb R$, starting with a general topological ring R (not necessarily metric, or even separated).

There is a notion of completeness of a topological ring. One can build some \widehat{R} which is a (minimal) complete separated space and a natural map $i:R\to \widehat{R}$. We want to extend addition and multiplication.

The i map is *not* injective if $\{0\}$ is not closed in R.

Define $R'=R/\overline{\{0\}}$ which is separated. Since $\overline{\{0\}}$ is an ideal, R' inherits addition and multiplication. Continuity is slightly tricky, but ok.

Define $R'=R/\overline{\{0\}}$ which is separated. Since $\overline{\{0\}}$ is an ideal, R' inherits addition and multiplication. Continuity is slightly tricky, but ok.

Then $i_{R'}:R'\to \widehat{R'}$ is injective and $\widehat{R'}$ is isomorphic to $\widehat{R}.$

Define $R'=R/\overline{\{0\}}$ which is separated. Since $\overline{\{0\}}$ is an ideal, R' inherits addition and multiplication. Continuity is slightly tricky, but ok.

Then $i_{R'}:R'\to \widehat{R'}$ is injective and $\widehat{R'}$ is isomorphic to $\hat{R}.$

Then redefine $\widehat{R} = \widehat{R'}$.

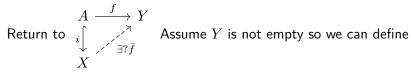
Define $R'=R/\overline{\{0\}}$ which is separated. Since $\overline{\{0\}}$ is an ideal, R' inherits addition and multiplication. Continuity is slightly tricky, but ok.

Then $i_{R'}:R'\to \widehat{R'}$ is injective and $\widehat{R'}$ is isomorphic to $\hat{R}.$

Then redefine $\widehat{R} = \widehat{R'}$.

Note: Even in ZFC, if R is already separated, $R' \neq R$.

Final extension theorem

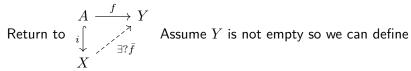


 E_i without any assumption on i.

Theorem

Fix $x_0 \in X$. If, for every x_1 in a neighborhood of x_0 , f(x) tends to a limit in Y when x tends to x_1 while remaining in A then $E_i f$ is continuous at x_0 .

Final extension theorem



 E_i without any assumption on i.

Theorem

Fix $x_0 \in X$. If, for every x_1 in a neighborhood of x_0 , f(x) tends to a limit in Y when x tends to x_1 while remaining in A then E_if is continuous at x_0 .

If in addition $x_0=i(a)$, f is continuous at a and i pulls back the topology of X to the topology of A then $E_i(f)(i(a))=f(a)$.

Side propaganda

The assumption in the first part of the previous theorem can be written as

$$\begin{split} \exists U \in \mathcal{N}_{x_0}, \forall x \in U, \exists y \in Y, \forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \\ \forall a \in A, i(a) \in V \Rightarrow f(a) \in W. \end{split}$$

Side propaganda

The assumption in the first part of the previous theorem can be written as

$$\begin{split} \exists U \in \mathcal{N}_{x_0}, \forall x \in U, \exists y \in Y, \forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \\ \forall a \in A, i(a) \in V \Rightarrow f(a) \in W. \end{split}$$

In mathlib, the assumption is written as

$$\{x\mid \exists y, f_*i^*\mathcal{N}_x\leq \mathcal{N}_y\}\in \mathcal{N}_{x_0}.$$

• We could do it without hiring a computer scientist

- We could do it without hiring a computer scientist
- Some mathematicians noticed.

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
- CPP 2020 liked it.

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
- CPP 2020 liked it.
- We did contribute to mathlib, but have a large merge backlog

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
- CPP 2020 liked it.
- We did contribute to mathlib, but have a large merge backlog
- Big projects are good. Next one?

