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Theorem (SG, 2020?)

In a Gromov-hyperbolic group, excursions of length n of a random
walk converge in distribution, as metric spaces, towards the
continuous random tree.

The statement involves probability, analysis, algebra, geometry.
Additionally, the proof involves complex analysis in Banach spaces,
spectral theory of operators, graph theory, potential theory,
dynamical systems...

No hope to formalize the proof in a proof assistant. What about
the statement? Still very far.
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Definition
A metric space is Gromov-hyperbolic if there exists δ ≥ 0 such
that, for all x , y , z ,w ,

d(x , y) + d(z ,w) 6 max(d(x , z) + d(y ,w), d(x ,w) + d(y , z)) + δ.

Captures the notion of negative curvature on large scale.

Geometric intuition when the space is geodesic (i.e., any two
points can be joined by a geodesic): triangles are thin.

Wikimedia Commons
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Theorem (Bonk-Schramm, 2000)

Any δ-hyperbolic metric space embeds isometrically in a
δ-hyperbolic geodesic metric space.

Lemma
Assume that X is δ-hyperbolic. Let x , y ∈ X . If there is no
midpoint between x and y , one can add one while retaining
δ-hyperbolicity.

Proof.
Set d(m, z) = d(x , y)/2+ supw (d(z ,w)−max(d(a,w), d(b,w))).
It works.

Proof of Bonk-Schramm Theorem.
Enumerate all pairs of points. Add middles, then complete, and do
it all over again until it stops by transfinite induction.
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Key point: use an inductive type to model both the middle
construction and the completion:

Lesson 1
Inductive types are useful (even for mathematicians)

Lesson 1’
Computer scientists are useful (even for mathematicians)

(datatype package in Isabelle/HOL, by Blanchette and al.)
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Definition
Let λ > 1 and C > 0. A (λ,C )-quasigeodesic is a map
f : [a, b]→ X such that, for all s, t ∈ [a, b],

λ−1|t − s| − C 6 d(f (s), f (t)) 6 λ|t − s|+ C .

Theorem (Morse Lemma)

Let f : [a, b]→ X be a (λ,C )-quasigeodesic, where X is
δ-hyperbolic. Then there exists A = A(λ,C , δ) such that f [a, b]
and a geodesic from f (a) to f (b) are at distance at most A.

Theorem (Shchur, 2013)

One can take A(λ,C , δ) = 37723λ2(C + δ).

Optimal, up to the constant 37723.
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Theorem (Gouëzel-Shchur, 2019)

One can take A(λ,C , δ) = 92λ2(C + δ).

Formalized in Isabelle/HOL.

Lesson 2
Mathematicians (as a community) can be wrong, and proof
assistants can already help.
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Numerical constants are irrelevant in Gromov-hyperbolic geometry.
But still, 37723 in Shchur, 92 in Gouëzel-Shchur!

Reason: in general, numerical constants are wrong, so no point in
optimizing. Except when using proof assistants.

In fact, our constant is 3200 ∗ exp(−459/50 ∗ ln 2)/ ln 2+ 84. Sage
says it’s 91.959195220789730234910660935....

Lesson 2’
Computer scientists are useful

(approximation package in Isabelle/HOL, by Hölzl, while an
undergrad)
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Definition
Hausdorff distance between A,B ⊆ X : smallest r such that A is
included in the r -neighborhood of B, and conversely.

Definition
Gromov-Hausdorff distance between two spaces X and Y : infimum
of dHausdorff (X

′,Y ′) where X ′, Y ′ are isometric copies of X and Y
in some space Z .

Definition
Gromov-Hausdorff space: space of all nonempty compact metric
spaces up to isometry, with the Gromov-Hausdorff distance.
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Theorem
The Gromov-Hausdorff space is a complete second-countable
metric space (a.k.a. Polish space).

One can do probability theory on the Gromov-Hausdorff space.

I formalized the proof of this theorem, but not in Isabelle/HOL
because I can not make sense of the sentence “a sequence of
compact metric types converges to a compact metric type there”. I
formalized it in Lean 3.
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Dependent types are useful (especially to mathematicians)
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