
Two Tools for Formalizing Mathematical Proofs

Robert Y. Lewis

Carnegie Mellon University

January 5, 2018



Motivation

Formalizing mathematics is hard.

How can we make it easier?



TOC

Introduction

The Lean proof assistant

Linking Lean and Mathematica

Solving nonlinear inequalities

Conclusion



Interactive theorem proving

We want a language (and an implementation of this language) for:

• Defining mathematical objects

• Stating properties of these objects

• Showing that these properties hold

• Checking that these proofs are correct

• Automatically generating these proofs

This language should be:

• Expressive

• User-friendly

• Computationally efficient



Challenges in ITP

Formalizing mathematics has many challenges:

• It often requires expert knowledge of both the mathematics
and the logic.

• Natural language mathematics is often vague or ambiguous.

• “Trivial” proof steps are not necessarily trivial to a computer.

• Processes and techniques that are informally valid—e.g.
diagrams, computer programs—can be difficult to formally
justify.



Contributions

This dissertation contributes two tools for the Lean proof assistant
that target these latter points.

• A connection between Lean and Mathematica

• A method for proving nonlinear inequalities

Broader ideas that connect these tools: partial formalization and
the formalization of mathematical process.



Partial formalization

Traditionally, formalization projects have targeted “gapless” proofs.

This makes proofs much harder to finish, and automation much
harder to write.

The tools in this dissertation allow partial formalization, to
increase speed and/or scope.



Formalizing mathematical processes

There is more to mathematics than its raw output: methods of
reasoning, heuristics, metamathematical info.

Lean’s metaprogramming framework allows these to be expressed
in the same language and same environment as definitions,
theorems, proofs.

New theories can describe how to incorporate themselves into
existing tools.



TOC

Introduction

The Lean proof assistant

Linking Lean and Mathematica

Solving nonlinear inequalities

Conclusion



Background: Lean

Lean is a new interactive theorem prover, developed principally by
Leonardo de Moura at Microsoft Research, Redmond.

Calculus of inductive constructions with:

• Non-cumulative hierarchy of universes

• Impredicative Prop

• Quotient types and propositional extensionality

• Axiom of choice available

See http://leanprover.github.io

Some slides in this section are borrowed from Jeremy Avigad and Leonardo de Moura — thanks!

http://leanprover.github.io


One language fits all

In simple type theory, we distinguish between

• types

• terms

• propositions

• proofs

Dependent type theory is flexible enough to encode them all in the
same language.

It can also encode programs, since terms have computational
meaning.



Lean as a programming language

Think of + as a program. An expression like 12 + 45 will reduce or
evaluate to 57.

But + is defined as unary addition – inefficient!

Lean implements a virtual machine which performs fast, untrusted
evaluation of Lean expressions.



Lean as a programming language

Definitions tagged with meta are “VM only,” and allow unchecked
recursive calls.

meta def f : N → N
| n := if n=1 then 1

else if n%2=0 then f (n/2)

else f (3*n + 1)

#eval (list.iota 1000).map f



Metaprogramming in Lean

Question: How can one go about writing tactics and automation?

Lean’s answer: go meta, and use Lean itself.

Advantages:

• Users don’t have to learn a new programming language.

• The entire library is available.

• Users can use the same infrastructure (debugger, profiler,
etc.).

• Users develop metaprograms in the same interactive
environment.

• Theories and supporting automation can be developed
side-by-side.



Metaprogramming in Lean

meta def find : expr → list expr → tactic expr

| e [] := failed

| e (h :: hs) :=

do t ← infer_type h,

(unify e t >> return h) <|> find e hs

meta def assumption : tactic unit :=

do { ctx ← local_context,

t ← target,

h ← find t ctx,

exact h }

<|> fail "assumption tactic failed"

lemma simple (p q : Prop) (h1 : p) (h2 : q) : q :=

by assumption



TOC

Introduction

The Lean proof assistant

Linking Lean and Mathematica

Solving nonlinear inequalities

Conclusion



CAS and ITP

CAS strengths:

• Easy and useful

• Instant gratification

• Interactive use, exploration

• Programmable and
extensible

CAS weaknesses:

• Focus on symbolic
computation, not abstract
definitions and assertions

• Not designed for reasoning

• Murky or nonexistent
semantics

ITP strengths:

• Languages are expressive
and well-specified

• Precise semantics

• Results are fully verified

ITP weaknesses:

• Formalization is slow

• It requires a high degree of
commitment and expertise

• It doesn’t promote
exploration and discovery



ITP + CAS

By linking the two, we can

• Allow exploration and computation in the proof assistant,
without reimplementing algorithms

• Lower the barrier for newcomers to ITP

• Loan a semantics/proof language to CAS

Many projects have attempted to connect the two: verified CAS
algorithms, trusting links, verified links, ephemeral links, CAS proof
languages.



Connecting Lean and Mathematica

• An extensible procedure to interpret Lean in Mathematica

• An extensible procedure to interpret Mathematica in Lean

• A link allowing Lean to evaluate arbitrary Mathematica
commands, and receive the results

• Tactics for certifying results of particular Mathematica
computations

• A link allowing Mathematica to execute Lean tactics and
receive the results



Connecting Lean and Mathematica

The idea: many declarations in Lean correspond roughly to
declarations in Mathematica.

We can do an approximate translation back and forth and verify
post hoc that the result is as expected.

Correspondences, translation rules, checking procedures are part of
a mathematical theory.



Link architecture

Lean expr
Lean expr in
MM syntax

Lean expr in
MM syntax

MM expr
MM expr in
Lean syntax

Lean expr

verification
tactics

elaborator



Example: factoring polynomials

@[translation_rule]

meta def add_to_pexpr : app_trans_pexpr_keyed_rule :=

〈"Plus",
λ env args,

do args’ ← list.mfor args (pexpr_of_mmexpr env),

return $ pexpr_fold_op ‘‘‘(0) ‘‘‘(has_add.add) args’〉

meta def assert_factor (e : expr) (nm : name) : tactic unit :=

do fe ← factor e,

pf ← eq_by_simp e fe,

note nm pf

example (x : R) : 1 - 2*x + 3*x^2 - 2*x^3 + x^4 ≥ 0 :=

begin

assert_factor 1 - 2*x + 3*x^2 - 2*x^3 + x^4 using h,

rewrite h,

apply sq_nonneg

end



Example: sanity checking

Many computations in Mathematica are not easily certifiable, but
can still be useful in interactive proofs.

sanity_check runs the Mathematica command FindInstance to
search for an assignment satisfying the hypotheses and the
negation of the goal. The tactic fails if an assignment is found.

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0) :

x = 0 :=

by sanity_check; admit

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0)

(h3 : -pi < x ∧ x < pi) : x = 0 :=

by sanity_check; admit



Example: sanity checking

meta def sanity_check_aux (hs : list expr) (xs : list

expr) : tactic unit :=

do t ← target,

nt ← to_expr ‘‘‘(¬ %%t),

hs’’ ← monad.foldl (λ a b, to_expr ‘‘‘(%%a ∧ %%b))

‘(true) (nt::hs),

l ← run_command_on_list

(λ e,

"With[{ls=Map[Activate[LeanForm[#]]&,"++e++"]},

Length[FindInstance[ls[[1]], Drop[ls, 1]]]]")

(hs’’::xs),

n ← to_expr ‘‘‘(%%l : N) >>= eval_expr N,
if n > 0 then

fail "sanity check: the negation of the goal is

consistent with hypotheses"

else skip



Examples

We can use this technique for:

• factoring (numbers, polynomials, matrices)

• linear arithmetic

• computing integrals/antiderivatives

• numeric approximations

• unverified simplification

• guiding tactics

• ...



TOC

Introduction

The Lean proof assistant

Linking Lean and Mathematica

Solving nonlinear inequalities

Conclusion



Nonlinear inequalities

0 < x < y , u < v

=⇒
2u + exp(1 + x + x4) < 2v + exp(1 + y + y4)

• This inference is not contained in linear arithmetic or real
closed fields.

• This inference is tight: symbolic or numeric approximations to
exp are not useful.

• Backchaining using monotonicity properties suggests many
equally plausible subgoals.

• But, the inference is completely straightforward.



A new method

We propose and implement a method based on this type of
heuristically guided forward reasoning. Our method:

• Verifies inequalities on which other procedures fail.

• Can produce fairly direct proof terms.

• Captures natural, human-like inferences.

• Performs well on real-life problems.

• Is not complete.

• Is not guaranteed to terminate.



Implementations

A prototype version of this system was implemented in Python 1 2.

For this dissertation, the algorithm has been redesigned to produce
proof terms, and has been implemented in Lean.

1Avigad, Lewis, and Roux. A heuristic prover for real inequalities. Journal
of Automated Reasoning, 2016

2Lewis. Polya: a heuristic procedure for reasoning with real inequalities. MS
thesis



Polya: modules and database

Any comparison between canonical terms can be expressed as
ti ./ 0 or ti ./ c · tj , where ./ ∈ {=, 6=, <,≤, >,≥}. This is in the
common language of addition and multiplication.

A central database (the blackboard) stores term definitions and
comparisons of this form.

Modules use this information to learn and assert new comparisons.

The procedure has succeeded in verifying an implication when
modules assert contradictory information.



Polya data types

meta structure blackboard : Type :=

(ineqs : hash_map (expr×expr) (λ p, ineq_info p.1 p.2))

(diseqs : hash_map (expr×expr) (λ p, diseq_info p.1 p.2))

(signs : hash_map expr sign_info)

(exprs : rb_set (expr × expr_form))

(contr : contrad)

(changed : bool := ff)



Polya: producing proof terms

Every piece of information asserted to the blackboard must be
tagged with a justification.

We define a datatype of justifications in Lean, and a metaprogram
that will convert a justification into a proof term.

meta inductive contrad

| none : contrad

| eq_diseq : Π {lhs rhs}, eq_data lhs rhs → diseq_data

lhs rhs → contrad

| ineqs : Π {lhs rhs}, ineq_info lhs rhs → ineq_data lhs

rhs → contrad

| sign : Π {e}, sign_data e → sign_data e → contrad

| strict_ineq_self : Π {e}, ineq_data e e → contrad

| sum_form : Π {sfc}, sum_form_proof sfc → contrad



Polya: producing proof terms

meta inductive ineq_proof : expr → expr → ineq → Type

meta inductive eq_proof : expr → expr → Q → Type

meta inductive diseq_proof : expr → expr → Q → Type

meta inductive sign_proof : expr → gen_comp → Type

#check ineq_proof.adhoc

/-

ineq_proof.adhoc : Π (lhs rhs : expr) (i : ineq),

tactic expr → ineq_proof lhs rhs i

-/



Polya: producing proof terms

Proof terms are assembled by traversing the proof trace tree.

Some steps, mostly related to normalization of algebraic terms, are
currently axiomatized.

This architecture separates search from reconstruction.



Polya: computational structure

Blackboard
Stores definitions and

comparisons

Additive Module
Derives comparisons using

additive definitions

Multiplicative Module
Derives comparisons using

multiplicative definitions

Axiom Instantiation Module
Derives comparisons using universal

axioms

Exp/Log Module
Derives comparisons and

axioms involving exp and log

Min/Max
Module

Derives comparisons

involving min and

max

Congruence
Closure Module

Enforces proper

interpretation of

functions

Absolute Value
Module

Derives comparisons and

axioms involving abs

nth Root Module
Derives comparisons and axioms

about fractional exponents



Theory modules

Each module looks specifically at terms with a certain structure.
E.g. a trigonometric module looks only at applications of sin, cos,
etc.

Theory modules can be developed alongside the mathematical
theory. Intuition: “when I see a term of this shape, this is what I
immediately know about it, and why.”

Modules can interact with other computational processes, e.g.
Mathematica.

Currently implemented in the Lean version: additive and
multiplicative arithmetic modules.



Examples

example

(h1 : u > 0) (h2 : u < v) (h3 : z > 0) (h4 : z + 1 < w)

(h5 : (u + v + z)^3 ≥ (u + v + w + 1)^5) : false :=

by polya h1 h2 h3 h4 h5

example

(h1 : x > 0) (h2 : x < 3*y) (h3 : u < v) (h4 : v < 0)

(h5 : 1 < v^2) (h6 : v^2 < x)

(h7 : u*(3*y)^2 + 1 ≥ x^2*v + x) : false :=

by polya h1 h2 h3 h4 h5 h6



Proof sketches

example (h1 : x > 0) (h2 : x < 1*1)

(h3 : (1 + (-1)*x)^(-1) ≤ (1 + (-1)*x^2)^(-1)) : false

/-

false : contradictory inequalities

1 ≤ 1*x^2 : by multiplicative arithmetic

x^2 ≥ 1*x : by linear arithmetic

1 * 1 + (-1) * x^2 ≤ 1*1 * 1 + (-1) * x

: by multiplicative arithmetic

(1 * 1 + (-1) * x)^-1 ≤ 1*(1 * 1 + (-1) * x^2)^-1 : hypothesis

1 = 1 * ((1 * 1 + (-1) * x)^-1^-1 * (1 * 1 + (-1) * x)^-1)

: by definition

1 = 1 * ((1 * 1 + (-1) * x^2)^-1^-1 * (1 * 1 + (-1) * x^2)^-1)

: by definition

1 = 1 * (x^2^-1 * x^2) : by definition

1 > 1*x^2 : by multiplicative arithmetic

1 = 1 * (x^2^-1 * x^2) : by definition

1 <1 * x^-1 : rearranging

x < 1*1 : hypothesis

x^2 > 0 : inferred from other sign data

-/



KeYmaera benchmarks

We have tested Polya on a collection of 4442 benchmark problems
generated by KeYmaera, a verification tool for hybrid systems.
With a three-second timeout:

• Python version of Polya: 96%, 6 minutes

• Lean version of Polya: 72%, 90 minutes

• Mathematica: 99%, 120 minutes



Conclusion

• Lean’s metaprogramming framework allows us to develop
theories and automation in sync.

• The automation can be an essential part of a theory.

• Tools that accomplish “standard” mathematical tasks will
help encourage mathematicians to use proof assistants.

• Lean’s metaprogramming framework is powerful enough to
implement these tools.



Conclusion

Thanks for listening!


	Introduction
	The Lean proof assistant
	Linking Lean and Mathematica
	Solving nonlinear inequalities
	Conclusion

